On a Class of Quantum Channels, Open Random Walks and Recurrence

被引:24
|
作者
Lardizabal, Carlos F. [1 ]
Souza, Rafael R. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
关键词
Quantum channel; Completely positive map; Quantum random walk; Recurrence; Markov chain; OPERATIONS; THEOREM;
D O I
10.1007/s10955-015-1217-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a particular class of trace-preserving completely positive maps, called PQ-channels, for which classical and quantum evolutions are isolated in a certain sense. By combining open quantum random walks with a notion of recurrence, we are able to describe criteria for recurrence of the walk related to this class of channels. Positive recurrence for open walks is also discussed in this context.
引用
收藏
页码:772 / 796
页数:25
相关论文
共 50 条
  • [21] Recurrence and windings of two revolving random walks
    Bosi, Gianluca
    Hu, Yiping
    Peres, Yuval
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [22] Quantum Random Walks in One Dimension
    Konno, Norio
    QUANTUM INFORMATION PROCESSING, 2002, 1 (05) : 345 - 354
  • [23] Quantum Random Walks in One Dimension
    Norio Konno
    Quantum Information Processing, 2002, 1 : 345 - 354
  • [24] Dynamic quantum Bernoulli random walks
    Guillotin-Plantard, Nadine
    Schott, Rene
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2008, 11 (02) : 213 - 229
  • [25] Approximation of quantum Levy processes by quantum random walks
    Franz, Uwe
    Skalski, Adam
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (02): : 281 - 288
  • [26] Recurrence and transience of excited random walks on Zd and strips
    Zerner, Martin P. W.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2006, 11 : 118 - 128
  • [27] On recurrence and transience of self-interacting random walks
    Yuval Peres
    Serguei Popov
    Perla Sousi
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 841 - 867
  • [28] On recurrence and transience of self-interacting random walks
    Peres, Yuval
    Popov, Serguei
    Sousi, Perla
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (04): : 841 - 867
  • [29] An answer to an open question on random walks on trees
    Konsowa, MH
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1996, 21 (03): : 451 - 455
  • [30] Open Quantum Random Walks: Ergodicity, Hitting Times, Gambler’s Ruin and Potential Theory
    Carlos F. Lardizabal
    Rafael R. Souza
    Journal of Statistical Physics, 2016, 164 : 1122 - 1156