Fast and Parallel Computation of the Discrete Periodic Radon Transform on GPUs, multi-core CPUs and FPGAs

被引:0
作者
Carranza, Cesar [1 ]
Pattichis, Marios [2 ]
Llamocca, Daniel [3 ]
机构
[1] Pontificia Univ Catolica Peru, Secc Elect & Elect, Lima 32, Peru
[2] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[3] Oakland Univ, Dept Elect & Comp Engn, Rochester, MI 48063 USA
来源
2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2018年
基金
美国国家科学基金会;
关键词
Discrete Periodic Radon Transform; Parallel Architecture; Multi-core CPU; GPU; FPGA; IMAGES;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Discrete Periodic Radon Transform (DPRT) has many important applications in reconstructing images from their projections and has recently been used in fast and scalable architectures for computing 2D convolutions. Unfortunately, the direct computation of the DPRT involves O(N-3) additions and memory accesses that can be very costly in single-core architectures. The current paper presents new and efficient algorithms for computing the DPRT and its inverse on multi-core CPUs and GPUs. The results are compared against specialized hardware implementations (FPGAs/ASICs). The results provide significant evidence of the success of the new algorithms. On an 8-core CPU (Intel Xeon), with support for two threads per core, FastDirDPRT and FastDirInvDPRT achieve a speedup of approximately 10x (up to 12:83x) over the single-core CPU implementation. On a 2048-core GPU (GTX 980), FastRayDPRT and FastRayInvDPRT achieve speedups in the range of 526 (for 127 x 127) to 873 (for 1021 x 1021), which approximate ideal speedups of what can be achieved. The DPRT can be computed exactly and in real-time (30 frames per second) for 1471x1471 images using FastRayDPRT on the GPU. Furthermore, the GPU algorithms approximate the performance of an efficient FPGA implementation using 2N parallel cores at 100MHz.
引用
收藏
页码:4158 / 4162
页数:5
相关论文
共 18 条
[1]  
Aggarwal N, 2006, IEEE T IMAGE PROCESS, V15, P582, DOI 10.1109/TIP.2005.863021
[2]   Medical image denoising on field programmable gate array using finite Radon transform [J].
Ahmad, A. ;
Amira, A. ;
Rabah, H. ;
Berviller, Y. .
IET SIGNAL PROCESSING, 2012, 6 (09) :862-870
[3]   Detection and Localization of Image Forgeries using Resampling Features and Deep Learning [J].
Bunk, Jason ;
Bappy, Jawadul H. ;
Mohammed, Tajuddin Manhar ;
Nataraj, Lakshmanan ;
Flenner, Arjuna ;
Manjunath, B. S. ;
Chandrasekaran, Shivkumar ;
Roy-Chowdhury, Amit K. ;
Peterson, Lawrence .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1881-1889
[4]  
Carranza C., 2012, Proceedings of the 2012 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI 2012), P121, DOI 10.1109/SSIAI.2012.6202468
[5]   Fast 2D Convolutions and Cross-Correlations Using Scalable Architectures [J].
Carranza, Cesar ;
Llamocca, Daniel ;
Pattichis, Marios .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (05) :2230-2245
[6]   Fast and Scalable Computation of the Forward and Inverse Discrete Periodic Radon Transform [J].
Carranza, Cesar ;
Llamocca, Daniel ;
Pattichis, Marios .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (01) :119-133
[7]  
Carranza C, 2014, IEEE IMAGE PROC, P1208, DOI 10.1109/ICIP.2014.7025241
[8]  
Chandrasekaran S., 2005, Proceedings. 2005 International Conference on Field Programmable Logic and Applications (IEEE Cat. No.05EX1155), P450
[9]   An efficient VLSI architecture and FPGA implementation of the Finite Ridgelet Transform [J].
Chandrasekaran, Shrutisagar ;
Amira, Abbes ;
Shi Minghua ;
Bermak, Amine .
JOURNAL OF REAL-TIME IMAGE PROCESSING, 2008, 3 (03) :183-193
[10]  
Deans S., 2007, DOVER BOOKS MATH SER