Performance Evaluation of Mixed-Precision Runge-Kutta Methods

被引:4
作者
Burnett, Ben [1 ]
Gottlieb, Sigal [1 ]
Grant, Zachary J. [2 ]
Heryudono, Alfa [1 ]
机构
[1] Univ Massachusetts Dartmouth, N Dartmouth, MA 02747 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN USA
来源
2021 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC) | 2021年
关键词
Mixed-precision; multiprecision; Runge-Kutta; numerical methods;
D O I
10.1109/HPEC49654.2021.9622803
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were proposed and analyzed in N. These specially designed methods use reduced precision for the implicit computations and full precision for the explicit computations. We develop a FORTRAN code to solve a nonlinear system of ordinary differential equations using the mixed precision additive Runge-Kutta (MP-ARK) methods on IBM POWER9 and Intel x86_64 chips. The convergence, accuracy, runtime, and energy consumption of these methods is explored. We show that these MP-ARK methods efficiently produce accurate solutions with significant reductions in runtime (and by extension energy consumption).
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Optimal Runge-Kutta methods for first order pseudospectral operators
    Mead, JL
    Renaut, RA
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (01) : 404 - 419
  • [32] Characterizing Strong Stability Preserving Additive Runge-Kutta Methods
    Higueras, Inmaculada
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 39 (01) : 115 - 128
  • [33] Numerical higher-order Runge-Kutta methods in transient and damping analysis
    Shaikh, A. G.
    Keerio, U.
    Shaikh, Wajid
    Sheikh, A. H.
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2022, 9 (10): : 174 - 179
  • [34] Starting algorithms for Gauss Runge-Kutta methods for Hamiltonian systems
    Calvo, M
    Laburta, MP
    Montijano, JI
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) : 401 - 410
  • [35] Efficient SSP low-storage Runge-Kutta methods
    Higueras, I
    Roldan, T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 387 (387)
  • [36] General order conditions for stochastic partitioned Runge-Kutta methods
    Anmarkrud, Sverre
    Debrabant, Kristian
    Kvaerno, Anne
    BIT NUMERICAL MATHEMATICS, 2018, 58 (02) : 257 - 280
  • [37] The approximate Runge-Kutta computational process
    Olsson, H
    Söderlind, G
    BIT NUMERICAL MATHEMATICS, 2000, 40 (02) : 351 - 373
  • [38] Runge-Kutta pairs of orders 9(8) for use in quadruple precision computations
    Kovalnogov, Vladislav N.
    Fedorov, Ruslan V.
    Karpukhina, Tamara V.
    Simos, Theodore E.
    Tsitouras, Charalampos
    NUMERICAL ALGORITHMS, 2024, 95 (04) : 1905 - 1919
  • [39] RUNGE-KUTTA STABILITY ON A FLOQUET PROBLEM
    HIGHAM, DJ
    BIT, 1994, 34 (01): : 88 - 98
  • [40] Runge-Kutta迭代函数(Ⅱ)(英文)
    韩波
    邵寄群
    哈尔滨工业大学学报, 1993, (01) : 110 - 114