Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

被引:117
作者
Chen, Jian [1 ]
Xue, Chengcheng [1 ]
Zhao, Yang [1 ]
Chen, Deyong [1 ]
Wu, Min-Hsien [2 ]
Wang, Junbo [1 ]
机构
[1] Chinese Acad Sci, Inst Elect, State Key Lab Transducer Technol, Beijing 100190, Peoples R China
[2] Chang Gung Univ, Grad Inst Biochem & Biomed Engn, Taoyuan 333, Taiwan
来源
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES | 2015年 / 16卷 / 05期
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
microfluidics; single-cell electrical property analysis; impedance flow cytometry; high throughput; RED-BLOOD-CELLS; MAXIMUM LENGTH SEQUENCES; PATCH-CLAMP TECHNIQUE; OF-CARE DIAGNOSTICS; BREAST-CANCER CELLS; MEMBRANE CAPACITANCE; CYTOPLASM CONDUCTIVITY; ON-CHIP; BIOPHYSICAL CHARACTERIZATION; PRACTICAL CONSIDERATIONS;
D O I
10.3390/ijms16059804
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.
引用
收藏
页码:9804 / 9830
页数:27
相关论文
共 128 条
  • [1] Effects of electrode surface modification with chlorotoxin on patterning single glioma cells
    Asphahani, Fareid
    Zheng, Xiaohao
    Veiseh, Omid
    Thein, Myo
    Xu, Jian
    Ohuchi, Fumio
    Zhang, Miqin
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (19) : 8953 - 8960
  • [2] Single-cell bioelectrical impedance platform for monitoring cellular response to drug treatment
    Asphahani, Fareid
    Wang, Kui
    Thein, Myo
    Veiseh, Omid
    Yung, Sandy
    Xu, Jian
    Zhang, Miqin
    [J]. PHYSICAL BIOLOGY, 2011, 8 (01)
  • [3] AUERBACH A, 1984, ANNU REV BIOPHYS BIO, V13, P269
  • [4] Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer
    Barat, David
    Spencer, Daniel
    Benazzi, Giuseppe
    Mowlem, Matthew Charles
    Morgan, Hywel
    [J]. LAB ON A CHIP, 2012, 12 (01) : 118 - 126
  • [5] Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer
    Barat, David
    Benazzi, Giuseppe
    Mowlem, Matthew Charles
    Miguel Ruano, Jesus
    Morgan, Hywel
    [J]. OPTICS COMMUNICATIONS, 2010, 283 (09) : 1987 - 1992
  • [6] Advances in patch clamp technique: towards higher quality and quantity
    Bebarova, Marketa
    [J]. GENERAL PHYSIOLOGY AND BIOPHYSICS, 2012, 31 (02) : 131 - 140
  • [7] Discrimination and analysis of phytoplankton using a microfluidic cytometer
    Benazzi, G.
    Holmes, D.
    Sun, T.
    Mowlem, M. C.
    Morgan, H.
    [J]. IET NANOBIOTECHNOLOGY, 2007, 1 (06) : 94 - 101
  • [8] Bernabini C, 2011, LAB CHIP, V11, P407, DOI [10.1039/c0lc00099j, 10.1039/c01c00099j]
  • [9] Extraction of dielectric properties of multiple populations from dielectrophoretic collection spectrum data
    Broche, LM
    Labeed, FH
    Hughes, MP
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (10) : 2267 - 2274
  • [10] Continuous and Long-Term Volume Measurements with a Commercial Coulter Counter
    Bryan, Andrea K.
    Engler, Alex
    Gulati, Amneet
    Manalis, Scott R.
    [J]. PLOS ONE, 2012, 7 (01):