A two-nuclease pathway involving RNase H1 is required for primer removal at human mitochondrial OriL

被引:23
作者
Al-Behadili, Ali [1 ]
Uhler, Jay P. [1 ]
Berglund, Anna-Karin [1 ]
Peter, Bradley [1 ]
Doimo, Mara [2 ]
Reyes, Aurelio [3 ]
Wanrooij, Sjoerd [2 ]
Zeviani, Massimo [3 ]
Falkenberg, Maria [1 ]
机构
[1] Univ Gothenburg, Dept Med Biochem & Cell Biol, POB 440, Gothenburg, Sweden
[2] Umea Univ, Dept Med Biochem & Biophys, S-90187 Umea, Sweden
[3] Univ Cambridge, MRC Mitochondrial Biol Unit, MRC Bldg,Hills Rd, Cambridge CB2 0XY, England
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
BASE EXCISION-REPAIR; DNA-LIGASE III; REVERSE TRANSCRIPTION; REPLICATION; POLYMERASE; RIBONUCLEOTIDES; BINDING; MAINTENANCE; MUTATIONS; STABILITY;
D O I
10.1093/nar/gky708
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The role of Ribonuclease H1 (RNase H1) during primer removal and ligation at the mitochondrial origin of light-strand DNA synthesis (OriL) is a key, yet poorly understood, step in mitochondrial DNA maintenance. Here, we reconstitute the replication cycle of L-strand synthesis in vitro using recombinant mitochondrial proteins and model OriL substrates. The process begins with initiation of DNA replication at OriL and ends with primer removal and ligation. We find that RNase H1 partially removes the primer, leaving behind the last one to three ribonucleotides. These 5'-end ribonucleotides disturb ligation, a conclusion which is supported by analysis of RNase H1-deficient patient cells. A second nuclease is therefore required to remove the last ribonucleotides and we demonstrate that Flap endonuclease 1 (FEN1) can execute this function in vitro. Removal of RNA primers at OriL thus depends on a two-nuclease model, which in addition to RNase H1 requires FEN1 or a FEN1-like activity. These findings define the role of RNase H1 at OriL and help to explain the pathogenic consequences of disease causing mutations in RNase H1.
引用
收藏
页码:9471 / 9483
页数:13
相关论文
共 46 条
[1]   Flap Endonuclease 1 [J].
Balakrishnan, Lata ;
Bambara, Robert A. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 82, 2013, 82 :119-138
[2]   Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA [J].
Berglund, Anna-Karin ;
Navarrete, Clara ;
Engqvist, Martin K. M. ;
Hoberg, Emily ;
Szilagyi, Zsolt ;
Taylor, Robert W. ;
Gustafsson, Claes M. ;
Falkenberg, Maria ;
Clausen, Anders R. .
PLOS GENETICS, 2017, 13 (02)
[3]   MECHANISM OF MITOCHONDRIAL-DNA REPLICATION IN MOUSE L-CELLS - ASYNCHRONOUS REPLICATION OF STRANDS, SEGREGATION OF CIRCULAR DAUGHTER MOLECULES, ASPECTS OF TOPOLOGY AND TURNOVER OF AN INITIATION SEQUENCE [J].
BERK, AJ ;
CLAYTON, DA .
JOURNAL OF MOLECULAR BIOLOGY, 1974, 86 (04) :801-824
[4]   Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice [J].
Cerritelli, SM ;
Frolova, EG ;
Feng, CG ;
Grinberg, A ;
Love, PE ;
Crouch, RJ .
MOLECULAR CELL, 2003, 11 (03) :807-815
[5]   Ribonuclease H: the enzymes in eukaryotes [J].
Cerritelli, Susana M. ;
Crouch, Robert J. .
FEBS JOURNAL, 2009, 276 (06) :1494-1505
[6]   REPLICATION AND TRANSCRIPTION OF VERTEBRATE MITOCHONDRIAL-DNA [J].
CLAYTON, DA .
ANNUAL REVIEW OF CELL BIOLOGY, 1991, 7 :453-478
[7]   Human DNA Ligase III Recognizes DNA Ends by Dynamic Switching between Two DNA-Bound States [J].
Cotner-Gohara, Elizabeth ;
Kim, Ln-Kwon ;
Hammel, Michal ;
Tainer, John A. ;
Tomkinson, Alan E. ;
Ellenberger, Tom .
BIOCHEMISTRY, 2010, 49 (29) :6165-6176
[8]   Causes and consequences of ribonucleotide incorporation into nuclear DNA [J].
Dalgaard, Jacob Z. .
TRENDS IN GENETICS, 2012, 28 (12) :592-597
[9]   PURIFICATION AND CHARACTERIZATION OF HUMAN RIBONUCLEASE HII [J].
FRANK, P ;
ALBERT, S ;
CAZENAVE, C ;
TOULME, JJ .
NUCLEIC ACIDS RESEARCH, 1994, 22 (24) :5247-5254
[10]   Mitochondrial RNA Polymerase Is Needed for Activation of the Origin of Light-Strand DNA Replication [J].
Fuste, Javier Miralles ;
Wanrooij, Sjoerd ;
Jemt, Elisabeth ;
Granycome, Caroline E. ;
Cluett, Tricia J. ;
Shi, Yonghong ;
Atanassova, Neli ;
Holt, Ian J. ;
Gustafsson, Claes M. ;
Falkenberg, Maria .
MOLECULAR CELL, 2010, 37 (01) :67-78