Bayesian prior elicitation in DSGE models: Macro- vs micropriors

被引:2
作者
Lombardi, Marco J. [1 ]
Nicoletti, Giulio [1 ,2 ]
机构
[1] European Cent Bank, D-63660 Frankfurt, Germany
[2] Banca Italia, I-00184 Rome, Italy
关键词
DSGE models; Bayesian estimation; Prior distribution; Impulse response function;
D O I
10.1016/j.jedc.2011.09.010
中图分类号
F [经济];
学科分类号
02 ;
摘要
Bayesian approaches to the estimation of DSGE models are becoming increasingly popular. Prior knowledge is normally formalized either directly on deep parameters' values ('microprior) or indirectly, on macroeconomic indicators, e.g. moments of observable variables ('macroprior'). We introduce a non-parametric macroprior which is elicited from impulse response functions and assess its performance in shaping posterior estimates. We find that using a macroprior can lead to substantially different posterior estimates. We probe into the details of our result, showing that model misspecification is likely to be responsible of that. In addition, we assess to what extent the use of macropriors is impaired by the need of calibrating some hyperparameters. (C) 2011 Published by Elsevier B.V.
引用
收藏
页码:294 / 313
页数:20
相关论文
共 14 条
  • [1] An S., 2007, ECONOMET REV, P187
  • [2] Bauwens L., 1998, BAYESIAN INFERENCE D
  • [3] Back to square one: Identification issues in DSGE models
    Canova, Fabio
    Sala, Luca
    [J]. JOURNAL OF MONETARY ECONOMICS, 2009, 56 (04) : 431 - 449
  • [4] Nominal rigidities and the dynamic effects of a shock to monetary policy
    Christiano, LJ
    Eichenbaum, M
    Evans, CL
    [J]. JOURNAL OF POLITICAL ECONOMY, 2005, 113 (01) : 1 - 45
  • [5] A Bayesian approach to dynamic macroeconomics
    DeJong, DN
    Ingram, BF
    Whiteman, CH
    [J]. JOURNAL OF ECONOMETRICS, 2000, 98 (02) : 203 - 223
  • [6] Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)
    Del Negro, Marco
    Schorfheide, Frank
    [J]. JOURNAL OF MONETARY ECONOMICS, 2008, 55 (07) : 1191 - 1208
  • [7] Durbin J., 2012, Time Series Analysis by State Space Methods
  • [8] An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants
    Moller, J.
    Pettitt, A. N.
    Reeves, R.
    Berthelsen, K. K.
    [J]. BIOMETRIKA, 2006, 93 (02) : 451 - 458
  • [9] Comparing New Keynesian models of the business cycle:: A Bayesian approach
    Rabanal, P
    Rubio-Ramírez, JF
    [J]. JOURNAL OF MONETARY ECONOMICS, 2005, 52 (06) : 1151 - 1166
  • [10] Saltelli A., 2004, Sensitivity analysis in practice: A guide to assessing scientific models (Reprinted)