CONTINENTAL SCALE LAND COVER CLASSIFICATION USING MODIS SURFACE REFLECTANCE PRODUCTS

被引:1
|
作者
Shimoda, Haruhisa [1 ]
Fukue, Kiyonari [1 ]
机构
[1] Tokai Univ, Res & Informat Ctr, Shibuya Ku, Tokyo 1510063, Japan
来源
2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2011年
关键词
land cover; classification; global;
D O I
10.1109/IGARSS.2011.6049224
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of this study is to develop land cover classification algorithm for Global and/or continental scale by using multi-temporal MODIS land reflectance products. Time-domain co-occurrence matrix is introduced as a classification feature that represents time-series signature of land covers. And the non-parametric minimum distance classification using Euclidian distance or cosine distance is conducted. As results, Surface Reflectance 8-Day L3 product and Nadir BRDF-Adjusted Reflectance product showed similar classification accuracy of 91%-93% for IGBP-17 land cover categories. Furthermore, it is confirmed that the accuracy is 14%-17% higher than that of MODIS land cover product for the target classification area.
引用
收藏
页码:692 / 695
页数:4
相关论文
共 50 条
  • [21] Maximizing land cover classification accuracies produced by decision trees at continental to global scales
    Friedl, MA
    Brodley, CE
    Strahler, AH
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (02): : 969 - 977
  • [22] Land-cover classification for Henan Province with time-series MODIS EVI data
    Liu X.
    Sun R.
    Wu F.
    Hu B.
    Wang W.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2010, 26 (SUPPL. 1): : 213 - 219
  • [23] Land cover characterization for a watershed in Kenya using MODIS data and Fourier algorithms
    Vithanage, Jagath
    Miller, Scott N.
    Driese, Kenneth
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [24] Assessing MODIS Land Cover Products over China with Probability of Interannual Change
    GAO Hao
    JIA Gen-Suo
    AtmosphericandOceanicScienceLetters, 2014, 7 (06) : 564 - 570
  • [25] Assessing MODIS Land Cover Products over China with Probability of Interannual Change
    Gao Hao
    Jia Gen-Suo
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2014, 7 (06) : 564 - 570
  • [26] Operational continental-scale land cover mapping of Australia using the Open Data Cube
    Owers, Christopher J.
    Lucas, Richard M.
    Clewley, Daniel
    Tissott, Belle
    Chua, Sean M. T.
    Hunt, Gabrielle
    Mueller, Norman
    Planque, Carole
    Punalekar, Suvarna M.
    Bunting, Pete
    Tan, Peter
    Metternicht, Graciela
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2022, 15 (01) : 1715 - 1737
  • [27] Detailed Urban Land Use Land Cover Classification at the Metropolitan Scale Using a Three-Layer Classification Scheme
    Cai, Guoyin
    Ren, Huiqun
    Yang, Liuzhong
    Zhang, Ning
    Du, Mingyi
    Wu, Changshan
    SENSORS, 2019, 19 (14)
  • [28] Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods
    McIver, DK
    Friedl, MA
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (09): : 1959 - 1968
  • [29] Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale
    Kaptue Tchuente, Armel Thibaut
    Roujean, Jean-Louis
    De Jong, Steven M.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2011, 13 (02): : 207 - 219
  • [30] The Potential of Open Geodata for Automated Large-Scale Land Use and Land Cover Classification
    Leinenkugel, Patrick
    Deck, Ramona
    Huth, Juliane
    Ottinger, Marco
    Mack, Benjamin
    REMOTE SENSING, 2019, 11 (19)