Biologically derived metal organic frameworks

被引:134
|
作者
Anderson, Samantha L. [1 ]
Stylianou, Kyriakos C. [1 ]
机构
[1] EPFL Valais Wallis, Lab Mol Simulat LSMO, ISIC, Rue Ind 17, CH-1951 Sion, Switzerland
基金
瑞士国家科学基金会;
关键词
ZEOLITIC IMIDAZOLATE FRAMEWORKS; PHYSIOLOGICAL PH CONDITIONS; CO2 ADSORPTION PROPERTIES; HIGH-THROUGHPUT SYNTHESIS; COORDINATION POLYMERS; CRYSTAL-STRUCTURE; CARBON-DIOXIDE; HYDROTHERMAL SYNTHESIS; SELECTIVE ADSORPTION; POROUS MATERIALS;
D O I
10.1016/j.ccr.2017.07.012
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Metal organic frameworks (MOFs) are extended structures composed of a network of organic ligands and metal ions or clusters connected to each other via coordination bonds. The numerous choices of organic ligands and metal coordination geometries have led to the construction of porous MOFs with various compositions, network topologies, pore sizes and shapes and they possess high surface areas and low densities. The structures of MOFs can be tailor-tuned in such a way that any desired ligand or/and metal ion can be incorporated; this has given to researchers the advantage of designing MOFs for a targeted application. Within this review, we overview recent examples of a sub-class of MOFs namely biologically derived MOFs (bio-MOFs), made of multifunctional and commercially available biologically derived ligands (bio-ligands) such as: amino acids, peptides, nucleobases and saccharides and focus on their coordination chemistry with a variety of metals. Central to this review are four tables detailing the coordination modes of bio-ligands to metals, along with a visual representation of the bio-MOF that is subsequently formed. Through the detailed analysis of these structures, we highlight the structural impact of these ligands on the structure, and their contribution to the MOF properties and applications. Finally, we showcase the potential of bio-MOFs in several research areas such as CO2 capture, separation, catalysis, drug delivery and sensing. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 128
页数:27
相关论文
共 50 条
  • [31] Metal-organic frameworks with multicomponents in order
    Pang, Qingqing
    Tu, Binbin
    Li, Qiaowei
    COORDINATION CHEMISTRY REVIEWS, 2019, 388 : 107 - 125
  • [32] Superhydrophobic perfluorinated metal-organic frameworks
    Chen, Teng-Hao
    Popov, Ilya
    Zenasni, Oussama
    Daugulis, Olafs
    Miljanic, Ognjen S.
    CHEMICAL COMMUNICATIONS, 2013, 49 (61) : 6846 - 6848
  • [33] A periodic table of metal-organic frameworks
    Griffin, Sarah L.
    Champness, Neil R.
    COORDINATION CHEMISTRY REVIEWS, 2020, 414
  • [34] The Use of Metalloligands in Metal-Organic Frameworks
    Garibay, Sergio J.
    Stork, Jay R.
    Cohen, Seth M.
    PROGRESS IN INORGANIC CHEMISTRY, VOL 56, 2009, 56 : 335 - 378
  • [35] Structure of Metal Organic Frameworks and the Periodicity of Their Properties
    Kustov, L. M.
    Kudelin, A. I.
    Isaeva, V. I.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 93 (12) : 2331 - 2339
  • [36] Chiral Lanthanide Metal-Organic Frameworks
    Liu, Weisheng
    Tang, Xiaoliang
    LANTHANIDE METAL-ORGANIC FRAMEWORKS, 2015, 163 : 29 - 74
  • [37] METAL-ORGANIC FRAMEWORKS AND THEIR APPLICATIONS IN CATALYSIS
    Dantas Ramos, Andre Luis
    Tanase, Stefania
    Rothenberg, Gadi
    QUIMICA NOVA, 2014, 37 (01): : 123 - 133
  • [38] Metal organic frameworks as catalysts for oxygen reduction
    Gonen, Shmuel
    Elbaz, Lior
    CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 9 : 179 - 188
  • [39] Molecular braids in metal-organic frameworks
    Yang, Guo-Ping
    Hou, Lei
    Luan, Xin-Jun
    Wu, Biao
    Wang, Yao-Yu
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (21) : 6992 - 7000
  • [40] Metal-Organic Frameworks: Opportunities for Catalysis
    Farrusseng, David
    Aguado, Sonia
    Pinel, Catherine
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (41) : 7502 - 7513