A Compact Electron Transport Layer Using a Heated Tin-Oxide Colloidal Solution for Efficient Perovskite Solar Cells

被引:4
作者
Meng, Juan [1 ,2 ,3 ]
Rohr, Jason A. [2 ]
Wang, Hang [2 ]
Sartor, B. Edward [2 ]
Song, Dandan [1 ,3 ]
Katzenberg, Adlai [2 ]
Modestino, Miguel A. [2 ]
Xu, Zheng [1 ,3 ]
Kong, Jaemin [4 ,5 ]
Taylor, Andre D. [2 ]
机构
[1] Beijing Jiaotong Univ, Key Lab Luminescence & Opt Informat, Minist Educ, Beijing 100044, Peoples R China
[2] NYU, Tandon Sch Engn, Dept Chem & Biomol Engn, New York, NY 11201 USA
[3] Beijing Jiaotong Univ, Inst Optoelect Technol, Beijing 100044, Peoples R China
[4] Gyeongsang Natl Univ, Res Inst Green Energy Convergence Technol, Jinju 52828, South Gyeongsan, South Korea
[5] Gwangju Inst Sci & Technol, Res Inst Solar & Sustainable Energies, Gwangju 61005, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
aqueous colloidal solutions; interface; perovskite solar cells; SnO2 electron transport layers; thin films; SNO2; NANOPARTICLES; GROWTH; METAL; FILMS;
D O I
10.1002/solr.202100794
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tin dioxide is a frequently reported electron transporting material for perovskite solar cells (PSCs) that yields high-performance devices and can be solution processed from aqueous colloidal solutions. While being very simple to process, electron transport layers deposited in this manner often lead to nonuniform film morphology, significantly affecting the morphology of the subsequent perovskite layer, lowering the overall device performance. Herein, it is shown that heating the SnO2 colloidal solution (70 degrees C) results in compact SnO2 films with increased surface coverage and fewer gaps in the SnO2 film. Such films possess threefold higher lateral electrical conductivity than those obtained from room-temperature solutions. The narrow gaps in the SnO2 film also reduce the chances of direct contact between the indium tin oxide electrode and the perovskite layer, yielding better contact with less voltage loss. The improved SnO2 surface coverage induces larger perovskite grains (approximate to 565 nm) than those prepared from the room-temperature solution (approximate to 273 nm). Finally, using these compact SnO2 layers, efficient and stable PSCs that retain approximate to 85% of the initial power conversion efficiency of 20.67% after 100 h of maximum power point tracking are demonstrated.
引用
收藏
页数:8
相关论文
共 54 条
[1]   Multifunctional organic ammonium salt-modified SnO2 nanoparticles toward efficient and stable planar perovskite solar cells [J].
Bi, Huan ;
Zuo, Xin ;
Liu, Baibai ;
He, Dongmei ;
Bai, Le ;
Wang, Wenqi ;
Li, Xiong ;
Xiao, Zeyun ;
Sun, Kuan ;
Song, Qunliang ;
Zang, Zhigang ;
Chen, Jiangzhao .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (07) :3940-3951
[2]   Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module [J].
Bu, Tongle ;
Li, Jing ;
Zheng, Fei ;
Chen, Weijian ;
Wen, Xiaoming ;
Ku, Zhiliang ;
Peng, Yong ;
Zhong, Jie ;
Cheng, Yi-Bing ;
Huang, Fuzhi .
NATURE COMMUNICATIONS, 2018, 9
[3]   Electronic structure of MAPbI3 and MAPbCl3: importance of band alignment [J].
Caputo, Marco ;
Cefarin, Nicola ;
Radivo, Andrea ;
Demitri, Nicola ;
Gigli, Lara ;
Plaisier, Jasper R. ;
Panighel, Mirco ;
Di Santo, Giovanni ;
Moretti, Sacha ;
Giglia, Angelo ;
Polentarutti, Maurizio ;
De Angelis, Filippo ;
Mosconi, Edoardo ;
Umari, Paolo ;
Tormen, Massimo ;
Goldoni, Andrea .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]   Imperfections and their passivation in halide perovskite solar cells [J].
Chen, Bo ;
Rudd, Peter N. ;
Yang, Shuang ;
Yuan, Yongbo ;
Huang, Jinsong .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (14) :3842-3867
[5]   Graphitic carbon nitride doped SnO2 enabling efficient perovskite solar cells with PCEs exceeding 22% [J].
Chen, Jinbo ;
Dong, Hua ;
Zhang, Lin ;
Li, Jingrui ;
Jia, Fuhao ;
Jiao, Bo ;
Xu, Jie ;
Hou, Xun ;
Liu, Jian ;
Wu, Zhaoxin .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (05) :2644-2653
[6]   Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review [J].
Dalapati, Goutam Kumar ;
Sharma, Himani ;
Guchhait, Asim ;
Chakrabarty, Nilanjan ;
Bamola, Priyanka ;
Liu, Qian ;
Saianand, Gopalan ;
Krishna, Ambati Mounika Sai ;
Mukhopadhyay, Sabyasachi ;
Dey, Avishek ;
Wong, Terence Kin Shun ;
Zhuk, Siarhei ;
Ghosh, Siddhartha ;
Chakrabortty, Sabyasachi ;
Mahata, Chandreswar ;
Biring, Sajal ;
Kumar, Avishek ;
Ribeiro, Camila Silva ;
Ramakrishna, Seeram ;
Chakraborty, Amit K. ;
Krishnamurthy, Satheesh ;
Sonar, Prashant ;
Sharma, Mohit .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (31) :16621-16684
[7]   p-Doping of organic hole transport layers in p-i-n perovskite solar cells: correlating open-circuit voltage and photoluminescence quenching [J].
Du, Tian ;
Xu, Weidong ;
Daboczi, Matyas ;
Kim, Jinhyun ;
Xu, Shengda ;
Lin, Chieh-Ting ;
Kang, Hongkyu ;
Lee, Kwanghee ;
Heeney, Martin J. ;
Kim, Ji-Seon ;
Durrant, James R. ;
McLachlan, Martyn A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (32) :18971-18979
[8]   Formation, location and beneficial role of PbI2 in lead halide perovskite solar cells [J].
Du, Tian ;
Burgess, Claire H. ;
Kim, Jinhyun ;
Zhang, Jiaqi ;
Durrant, James R. ;
McLachlan, Martyn A. .
SUSTAINABLE ENERGY & FUELS, 2017, 1 (01) :119-126
[9]   Suns-VOC characteristics of high performance kesterite solar cells [J].
Gunawan, Oki ;
Gokmen, Tayfun ;
Mitzi, David B. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (08)
[10]   Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells [J].
Haase, Felix ;
Hollemann, Christina ;
Schaefer, Soeren ;
Merkle, Agnes ;
Rienaecker, Michael ;
Kruegener, Jan ;
Brendel, Rolf ;
Peibst, Robby .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 186 :184-193