An odd Khovanov homotopy type

被引:7
作者
Sarkar, Sucharit [1 ]
Scaduto, Christopher [2 ]
Stoffregen, Matthew [3 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
[3] MIT, Dept Math, Cambridge, MA 02142 USA
关键词
Odd Khovanov homology; Stable homotopy refinement; HOMOLOGY;
D O I
10.1016/j.aim.2020.107112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each link L subset of S-3 and every quantum grading j, we construct a stable homotopy type X-o(j)(L) whose cohomology recovers Ozsvath-Rasmussen-Szabo's odd Khovanov homology, (H) over tilde (i)(X-o(j)(L)) = Kh(o)(i, j)(L), following a construction of Lawson-Lipshitz-Sarkar of the even Khovanov stable homotopy type. Furthermore, the odd Khovanov homotopy type carries a Z/2 action whose fixed point set is a desuspension of the even Khovanov homotopy type. We also construct a potentially new even Khovanov homotopy type with a Z/2 action, with fixed point set a desuspension of X-o(j)(L). (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:51
相关论文
共 34 条
[31]  
Seed C., 1882, ARXIV12101882
[32]   A link invariant from the symplectic geometry of nilpotent slices [J].
Seidel, Paul ;
Smith, Ivan .
DUKE MATHEMATICAL JOURNAL, 2006, 134 (03) :453-514
[33]   Calculating Bar-Natan's characteristic two Khovanov homology [J].
Turner, Paul R. .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2006, 15 (10) :1335-1356
[34]   HOMOTOPY LIMITS AND COLIMITS [J].
VOGT, RM .
MATHEMATISCHE ZEITSCHRIFT, 1973, 134 (01) :11-52