An odd Khovanov homotopy type

被引:7
作者
Sarkar, Sucharit [1 ]
Scaduto, Christopher [2 ]
Stoffregen, Matthew [3 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
[3] MIT, Dept Math, Cambridge, MA 02142 USA
关键词
Odd Khovanov homology; Stable homotopy refinement; HOMOLOGY;
D O I
10.1016/j.aim.2020.107112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each link L subset of S-3 and every quantum grading j, we construct a stable homotopy type X-o(j)(L) whose cohomology recovers Ozsvath-Rasmussen-Szabo's odd Khovanov homology, (H) over tilde (i)(X-o(j)(L)) = Kh(o)(i, j)(L), following a construction of Lawson-Lipshitz-Sarkar of the even Khovanov stable homotopy type. Furthermore, the odd Khovanov homotopy type carries a Z/2 action whose fixed point set is a desuspension of the even Khovanov homotopy type. We also construct a potentially new even Khovanov homotopy type with a Z/2 action, with fixed point set a desuspension of X-o(j)(L). (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:51
相关论文
共 34 条
[1]   Khovanov's homology for tangle and cobordisms [J].
Bar-Natan, D .
GEOMETRY & TOPOLOGY, 2005, 9 :1443-1499
[2]  
Bar-Natan D., 2002, Algebr. Geom. Topol., V2, P337, DOI DOI 10.2140/AGT.2002.2.337
[3]  
Benabou J., 1967, REPORTS MIDWEST CATE, V47, P1
[4]  
CLARK D, ARXIVMATH0701339
[5]  
Cohen R., 1995, The Floer memorial volume, P297
[6]  
Greenlees J P C, 1995, Handbook of algebraic topology, P277
[7]  
Hu P, 2016, Topology Proc., V48, P327
[8]  
Jacobsson M, 2004, Algebr. Geom. Topol., V4, P1211
[9]   An invariant of tangle cobordisms [J].
Khovanov, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (01) :315-327
[10]   Patterns in knot cohomology, I [J].
Khovanov, M .
EXPERIMENTAL MATHEMATICS, 2003, 12 (03) :365-374