Bartlett adjustment of empirical discrepancy statistics

被引:71
作者
Corcoran, SA [1 ]
机构
[1] Univ Oxford, Oxford OX1 2JD, England
关键词
empirical exponential family; empirical likelihood; likelihood ratio statistic; nonparametric likelihood;
D O I
10.1093/biomet/85.4.967
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce two classes of empirical discrepancy statistics that extend empirical likelihood, and establish simple conditions under which they admit Bartlett adjustment.
引用
收藏
页码:967 / 972
页数:6
相关论文
共 12 条
[1]   Empirical likelihood as a goodness-of-fit measure [J].
Baggerly, KA .
BIOMETRIKA, 1998, 85 (03) :535-547
[2]  
BARNDORFFNIELSE.OE, 1989, ASYMPTOTIC TECHNIQUE
[3]   VALIDITY OF FORMAL EDGEWORTH EXPANSION [J].
BHATTACHARYA, RN ;
GHOSH, JK .
ANNALS OF STATISTICS, 1978, 6 (02) :434-451
[4]  
Davison A. C., 2003, BOOTSTRAP METHODS TH
[5]   EMPIRICAL LIKELIHOOD IS BARTLETT-CORRECTABLE [J].
DICICCIO, T ;
HALL, P ;
ROMANO, J .
ANNALS OF STATISTICS, 1991, 19 (02) :1053-1061
[6]  
Jing BY, 1996, ANN STAT, V24, P365
[7]  
MCCULLAGH P, 1998, TENSOR METHODS STAT
[8]   EMPIRICAL LIKELIHOOD FOR LINEAR-MODELS [J].
OWEN, A .
ANNALS OF STATISTICS, 1991, 19 (04) :1725-1747
[9]   EMPIRICAL LIKELIHOOD RATIO CONFIDENCE-INTERVALS FOR A SINGLE FUNCTIONAL [J].
OWEN, AB .
BIOMETRIKA, 1988, 75 (02) :237-249
[10]  
OWEN AB, 1990, ANN STAT, V18, P190