Fully Discrete Finite Element Approximation of the MHD Flow

被引:4
作者
He, Yinnian [2 ]
Zhang, Guo-Dong [3 ]
Zou, Jun [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[3] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
基金
美国国家科学基金会;
关键词
MHD Flow; Finite Element Approximations; Error Estimates; Negative-Norm Technique; NAVIER-STOKES PROBLEM; ERROR ANALYSIS; ACCURATE; SCHEME;
D O I
10.1515/cmam-2021-0172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider a fully discrete finite element approximation of the 3D incompressible magnetohydrodynamic system. The velocity and magnetic field are approximated both by piecewise quadratic finite elements, while the pressure is approximated by piecewise linear finite elements. The time discretization is based on the Crank-Nicolson scheme for the linear terms in the model and the explicit Adams-Bashforth for the nonlinear terms. We establish the optimal error estimates of both the approximate velocity and magnetic field in H-1-norm and of the approximate pressure in L-2-norm. In order to achieve the optimal L-2-norm error estimates of both the approximate velocity and magnetic field, we shall make use of a special negative norm technique.
引用
收藏
页码:357 / 388
页数:32
相关论文
共 50 条
  • [1] A PRIORI ESTIMATES AND OPTIMAL FINITE ELEMENT APPROXIMATION OF THE MHD FLOW IN SMOOTH DOMAINS
    He, Yinnian
    Zou, Jun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (01): : 181 - 206
  • [2] Fully discrete finite element approximation for anisotropic surface diffusion of graphs
    Deckelnick, K
    Dziuk, G
    Elliott, CM
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 1112 - 1138
  • [3] Fully-Discrete Finite Element Approximation for a Family of Degenerate Parabolic Problems
    Acevedo, Ramiro
    Gomez, Christian
    Lopez-Rodriguez, Bibiana
    MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (01) : 134 - 160
  • [4] Fully discrete finite element approximation for a family of degenerate parabolic mixed equations
    Acevedo, Ramiro
    Gomez, Christian
    Lopez-Rodriguez, Bibiana
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 96 : 155 - 177
  • [5] A Fully Discrete Symmetric Finite Volume Element Approximation of Nonlocal Reactive Flows in Porous Media
    Yin, Zhe
    Xu, Qiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [6] Fully discrete finite element approximation of the stochastic Cahn-Hilliard-Navier-Stokes system
    Deugoue, G.
    Moghomye, B. Jidjou
    Medjo, T. Tachim
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 3046 - 3112
  • [7] UNCONDITIONAL STABILITY AND CONVERGENCE ANALYSIS OF FULLY DISCRETE STABILIZED FINITE VOLUME METHOD FOR THE TIME-DEPENDENT INCOMPRESSIBLE MHD FLOW
    Zhang, Tong
    Chu, Xiaochen
    Chen, Chuanjun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (11): : 5839 - 5880
  • [8] A FULLY DISCRETE EVOLVING SURFACE FINITE ELEMENT METHOD
    Dziuk, Gerhard
    Elliott, Charles M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2677 - 2694
  • [9] A two-grid fully discrete Galerkin finite element approximation for fully nonlinear time-fractional wave equations
    Li, Kang
    Tan, Zhijun
    NONLINEAR DYNAMICS, 2023, 111 (09) : 8497 - 8521
  • [10] Error Estimate of a Fully Discrete Finite Element Method for Incompressible Vector Potential Magnetohydrodynamic System
    Ding, Qianqian
    Long, Xiaonian
    Mao, Shipeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)