From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae

被引:31
作者
Ishii, Jun [1 ]
Okazaki, Fumiyoshi [2 ,6 ]
Djohan, Apridah Cameliawati [3 ]
Hara, Kiyotaka Y. [2 ,7 ]
Asai-Nakashima, Nanami [1 ]
Teramura, Hiroshi [1 ]
Andriani, Ade [3 ]
Tominaga, Masahiro [1 ]
Wakai, Satoshi [1 ]
Kahar, Prihardi [4 ]
Yopi [3 ]
Prasetya, Bambang [3 ]
Ogino, Chiaki [1 ,4 ,5 ]
Kondo, Akihiko [4 ]
机构
[1] Kobe Univ, Grad Sch Sci Technol & Innovat, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
[2] Kobe Univ, Org Adv Sci & Technol, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
[3] Indonesian Inst Sci LIPI, Biotechnol Res Ctr, Cibinong Jalan Raya Bogor Km 46, Cibinong 16911, West Java, Indonesia
[4] Kobe Univ, Dept Chem Sci & Engn, Grad Sch Engn, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
[5] RIKEN, Ctr Sustainable Resource Sci, 1-7-22 Suehiro, Yokohama, Kanagawa 2300045, Japan
[6] Mie Univ, Grad Sch Bioresources, Dept Life Sci, 1577 Kurimamachiya, Tsu, Mie 5148507, Japan
[7] Univ Shizuoka, Dept Environm Sci, Grad Sch Nutr & Environm Sci, 52-1 Yada, Shizuoka 4228526, Japan
来源
BIOTECHNOLOGY FOR BIOFUELS | 2016年 / 9卷
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Mannan; Yeast; Saccharomyces cerevisiae; Cell surface display; Mannanase; Mannosidase; Ethanol; Fermentation; Biomass resource; Biofuel; ASPERGILLUS-ACULEATUS; ETHANOL-PRODUCTION; EXPRESSION; GENE; LIGNOCELLULOSE; ENZYMES; PURIFICATION; HYDROLYSIS; CHEMICALS; CLONING;
D O I
10.1186/s13068-016-0600-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that enables the immobilization of multiple enzymes on the yeast cell walls, we constructed a recombinant Saccharomyces cerevisiae strain that co-displays beta-mannanase and beta-mannosidase; this strain is expected to facilitate ethanol fermentation using mannan as a biomass source. Results: Parental yeast S. cerevisiae assimilated mannose and glucose as monomeric sugars, producing ethanol from mannose. We constructed yeast strains that express tethered beta-mannanase and beta-mannosidase; co-display of the two enzymes on the cell surface was confirmed by immunofluorescence staining and enzyme activity assays. The constructed yeast cells successfully hydrolyzed 1,4-beta-D-mannan and produced ethanol by assimilating the resulting mannose without external addition of enzymes. Furthermore, the constructed strain produced ethanol from 1,4-beta-D-mannan continually during the third batch of repeated fermentation. Additionally, the constructed strain produced ethanol from ivory nut mannan; ethanol yield was improved by NaOH pretreatment of the substrate. Conclusions: We successfully displayed beta-mannanase and beta-mannosidase on the yeast cell surface. Our results clearly demonstrate the utility of the strain co-displaying beta-mannanase and beta-mannosidase for ethanol fermentation from mannan biomass. Thus, co-tethering beta-mannanase and beta-mannosidase on the yeast cell surface provides a powerful platform technology for yeast fermentation toward the production of bioethanol and other biochemicals from lignocellulosic materials containing mannan components.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Expression cassette and plasmid construction for Yeast Surface Display in Saccharomyces cerevisiae
    Araujo Piraine, Renan Eugenio
    Goncalves, Vitoria Sequeira
    dos Santos Junior, Alceu Goncalves
    Cunha, Rodrigo Casquero
    Medeiros de Albuquerque, Pedro Machado
    Conrad, Neida Lucia
    Leivas Leite, Fabio Pereira
    BIOTECHNOLOGY LETTERS, 2021, 43 (08) : 1649 - 1657
  • [22] Bioethanol production from cassava starch using co-culture of saccharolytic molds with Saccharomyces cerevisiae TISTR 5088
    Pimpisai, Timakorn
    Maneerattanarungroj, Cherdsak
    Kingkaew, Engkarat
    Ochaikul, Duangjai
    SCIENCEASIA, 2024, 50 (04):
  • [23] Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae
    Matsuoka, Hiroyuki
    Hashimoto, Kazuya
    Saijo, Aki
    Takada, Yuki
    Kondo, Akihiko
    Ueda, Mitsuyoshi
    Ooshima, Hiroshi
    Tachibana, Taro
    Azuma, Masayuki
    YEAST, 2014, 31 (02) : 67 - 76
  • [24] Display of Clostridium cellulovorans Xylose Isomerase on the Cell Surface of Saccharomyces cerevisiae and its Direct Application to Xylose Fermentation
    Ota, Miki
    Sakuragi, Hiroshi
    Morisaka, Hironobu
    Kuroda, Kouichi
    Miyake, Hideo
    Tamaru, Yutaka
    Ueda, Mitsuyoshi
    BIOTECHNOLOGY PROGRESS, 2013, 29 (02) : 346 - 351
  • [25] Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannan
    Yoshio Katakura
    Ryosuke Sano
    Takashi Hashimoto
    Kazuaki Ninomiya
    Suteaki Shioya
    Applied Microbiology and Biotechnology, 2010, 86 : 319 - 326
  • [26] Bioethanol Production Optimization from KOH-Pretreated Bombax ceiba Using Saccharomyces cerevisiae through Response Surface Methodology
    Ghazanfar, Misbah
    Irfan, Muhammad
    Nadeem, Muhammad
    Shakir, Hafiz Abdullah
    Khan, Muhammad
    Ahmad, Irfan
    Saeed, Shagufta
    Chen, Yue
    Chen, Lijing
    FERMENTATION-BASEL, 2022, 8 (04):
  • [27] Enhanced Cell-Surface Display and Secretory Production of Cellulolytic Enzymes With Saccharomyces cerevisiae Sed1 Signal Peptide
    Inokuma, Kentaro
    Bamba, Takahiro
    Ishii, Jun
    Ito, Yoichiro
    Hasunuma, Tomohisa
    Kondo, Akihiko
    BIOTECHNOLOGY AND BIOENGINEERING, 2016, 113 (11) : 2358 - 2366
  • [28] Simultaneous Production of Bioethanol and Bioelectricity in a Membrane-Less Single-Chambered Yeast Fuel Cell by Saccharomyces cerevisiae and Pichia fermentans
    Shrivastava, Akansha
    Pal, Mamta
    Sharma, Rakesh Kumar
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (06) : 6763 - 6771
  • [29] One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae
    Park, Enoch Y.
    Naruse, Kazuya
    Kato, Tatsuya
    BIOTECHNOLOGY FOR BIOFUELS, 2012, 5
  • [30] Surface display of active lipases Lip7 and Lip8 from Yarrowia Lipolytica on Saccharomyces Cerevisiae
    Liu, Wen-Shan
    Pan, Xiao-Xing
    Jia, Bin
    Zhao, He-Yun
    Xu, Li
    Liu, Yun
    Yan, Yun-Jun
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 88 (04) : 885 - 891