The GeV-TeV Galactic gamma-ray diffuse emission I. Uncertainties in the predictions of the hadronic component

被引:31
|
作者
Delahaye, T. [1 ]
Fiasson, A. [2 ]
Pohl, M. [3 ,4 ]
Salati, P. [5 ]
机构
[1] Univ Autonoma Madrid Cantoblanco, Inst Fis Teor, UAM CSIC, Madrid 28049, Spain
[2] Univ Savoie, CNRS, LAPP, F-74941 Annecy Le Vieux, France
[3] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[4] DESY, D-15738 Zeuthen, Germany
[5] Univ Savoie, LAPTH, CNRS, F-74941 Annecy Le Vieux, France
来源
ASTRONOMY & ASTROPHYSICS | 2011年 / 531卷
关键词
gamma rays: diffuse background; cosmic rays; methods: analytical; gamma rays: ISM; COSMIC-RAY; MOLECULAR GAS; MILKY-WAY; 3-DIMENSIONAL DISTRIBUTION; SECONDARY ANTIPROTONS; RADIAL-DISTRIBUTION; CROSS-SECTIONS; COLUMN DENSITY; PROPAGATION; SPECTRUM;
D O I
10.1051/0004-6361/201116647
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The Galactic gamma-ray diffuse emission is currently observed in the GeV-TeV energy range with unprecedented accuracy by the Fermi satellite. Understanding this component is crucial because it provides a background to many different signals, such as extragalactic sources or annihilating dark matter. It is timely to reinvestigate how it is calculated and to assess the various uncertainties that are likely to affect the accuracy of the predictions. Aims. The Galactic gamma-ray diffuse emission is mostly produced above a few GeV by the interactions of cosmic ray primaries impinging on the interstellar material. The theoretical error on that component is derived by exploring various potential sources of uncertainty. Particular attention is paid to cosmic ray propagation. Nuclear cross sections, the proton and helium fluxes at the Earth's position, the Galactic radial profile of supernova remnants, and the hydrogen distribution can also severely affect the signal. Methods. The propagation of cosmic ray species throughout the Galaxy is described in the framework of a semi-analytic two-zone diffusion/convection model. The gamma-ray flux is reliably and quickly determined. This allows conversion of the constraints set by the boron-to-carbon data into a theoretical uncertainty on the diffuse emission. New deconvolutions of the HI and CO sky maps are also used to get the hydrogen distribution within the Galaxy. Results. The thickness of the cosmic ray diffusive halo is found to have a significant effect on the Galactic gamma-ray diffuse emission, while the interplay between diffusion and convection has little influence on the signal. The uncertainties related to nuclear cross sections and to the primary cosmic ray fluxes at the Earth are significant. The radial distribution of supernova remnants along the Galactic plane turns out to be a key ingredient. As expected, the predictions are extremely sensitive to the spatial distribution of hydrogen within the Milky Way. Conclusions. Most of the sources of uncertainty are likely to be reduced in the near future. The stress should be put (i) on better determination of the thickness of the cosmic ray diffusive halo; and (ii) on refined observations of the radial profile of supernova remnants.
引用
收藏
页数:19
相关论文
共 46 条
  • [21] EGRET observations of the diffuse gamma-ray emission from the Galactic plane
    Hunter, SD
    Bertsch, DL
    Catelli, JR
    Dame, TM
    Digel, SW
    Dingus, BL
    Esposito, JA
    Fichtel, CE
    Hartman, RC
    Kanbach, G
    Kniffen, DA
    Lin, YC
    MayerHasselwander, HA
    Michelson, PF
    vonMontigny, C
    Mukherjee, R
    Nolan, PL
    Schneid, E
    Sreekumar, P
    Thaddeus, P
    Thompson, DJ
    ASTROPHYSICAL JOURNAL, 1997, 481 (01) : 205 - 240
  • [22] The diffuse gamma-ray emission toward the Galactic mini starburst W43
    Yang, Rui-Zhi
    Wang, Yuan
    ASTRONOMY & ASTROPHYSICS, 2020, 640
  • [23] Resonant oscillations of GeV-TeV neutrinos in internal shocks from gamma-ray burst jets inside stars
    Fraija, Nissim
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 450 (03) : 2784 - 2798
  • [24] High energy diffuse gamma-ray emission of the galactic disk and galactic cosmic-ray spectra
    Satyendra, Thoudam
    ASTROPARTICLE PHYSICS, 2006, 25 (05) : 328 - 341
  • [25] Interpreting the GeV-TeV gamma-ray spectra of local giant molecular clouds using GEANT4 simulation
    Roy, Abhijit
    Joshi, Jagdish C.
    Cardillo, Martina
    Sarkar, Ritabrata
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (08):
  • [26] Limits for an inverse bremsstrahlung origin of the diffuse Galactic soft gamma-ray emission
    Pohl, M
    ASTRONOMY & ASTROPHYSICS, 1998, 339 (02): : 587 - 590
  • [27] GEV/TEV GAMMA-RAY EMISSION FROM DENSE MOLECULAR CLOUDS OVERTAKEN BY SUPERNOVA SHELLS
    AHARONIAN, FA
    DRURY, LO
    VOLK, HJ
    ASTRONOMY & ASTROPHYSICS, 1994, 285 (02) : 645 - 647
  • [28] THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100 MeV AND 820 GeV
    Ackermann, M.
    Ajello, M.
    Albert, A.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    Cuoco, A.
    Cutini, S.
    D'Ammando, F.
    de Angelis, A.
    de Palma, F.
    Dermer, C. D.
    Digel, S. W.
    do Couto e Silva, E.
    Drell, P. S.
    Favuzzi, C.
    Ferrara, E. C.
    Focke, W. B.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    ASTROPHYSICAL JOURNAL, 2015, 799 (01)
  • [29] Diffuse gamma-ray emission from the Galactic center and implications of its past activities
    Fujita, Yutaka
    Kimura, Shigeo S.
    Murase, Kohta
    MULTI-MESSENGER ASTROPHYSICS OF THE GALACTIC CENTRE, 2017, 11 (S322): : 214 - 217
  • [30] STUDY OF THE DIFFUSE GAMMA-RAY EMISSION FROM THE GALACTIC PLANE WITH ARGO-YBJ
    Bartoli, B.
    Bernardini, P.
    Bi, X. J.
    Branchini, P.
    Budano, A.
    Camarri, P.
    Cao, Z.
    Cardarelli, R.
    Catalanotti, S.
    Chen, S. Z.
    Chen, T. L.
    Creti, P.
    Cui, S. W.
    Dai, B. Z.
    D'Amone, A.
    Danzengluobu
    De Mitri, I.
    Piazzoli, B. D'Ettorre
    Di Girolamo, T.
    Di Sciascio, G.
    Feng, C. F.
    Feng, Zhaoyang
    Feng, Zhenyong
    Gou, Q. B.
    Guo, Y. Q.
    He, H. H.
    Hu, Haibing
    Hu, Hongbo
    Iacovacci, M.
    Iuppa, R.
    Jia, H. Y.
    Labaciren
    Li, H. J.
    Liguori, G.
    Liu, C.
    Liu, J.
    Liu, M. Y.
    Lu, H.
    Ma, L. L.
    Ma, X. H.
    Mancarella, G.
    Mari, S. M.
    Marsella, G.
    Martello, D.
    Mastroianni, S.
    Montini, P.
    Ning, C. C.
    Panareo, M.
    Perrone, L.
    Pistilli, P.
    ASTROPHYSICAL JOURNAL, 2015, 806 (01)