Effect of sternal electrode gap and belt rotation on the robustness of pulmonary electrical impedance tomography parameters

被引:11
作者
Sophocleous, L. [1 ]
Waldmann, A. D. [2 ,3 ]
Becher, T. [4 ]
Kallio, M. [5 ,6 ]
Rahtu, M. [5 ,6 ]
Miedema, M. [7 ,8 ]
Papadouri, T. [9 ]
Karaoli, C. [9 ]
Tingay, D. G. [10 ,11 ,12 ]
Van Kaam, A. H. [7 ,8 ]
Yerworth, R. [13 ]
Bayford, R. [14 ]
Frerichs, I [4 ]
机构
[1] Univ Cyprus, KIOS Res Ctr, Dept Elect & Comp Engn, Nicosia, Cyprus
[2] Rostock Univ, Dept Anaesthesiol & Intens Care Med, Med Ctr, Rostock, Germany
[3] SenTec AG, Landquart, Switzerland
[4] Univ Med Ctr Schleswig Holstein, Dept Anaesthesiol & Intens Care Med, Campus Kiel, Kiel, Germany
[5] Univ Oulu, PEDEGO Res Unit, Oulu, Finland
[6] Oulu Univ Hosp, Dept Children & Adolescents, Oulu, Finland
[7] Univ Amsterdam, Emma Childrens Hosp, Dept Neonatol, Amsterdam UMC, Amsterdam, Netherlands
[8] Vrije Univ Amsterdam, Amsterdam, Netherlands
[9] Arch Makarios Iii Hosp, Neonatal Intens Care Unit, Nicosia, Cyprus
[10] Murdoch Childrens Res Inst, Neonatal Res, Parkville, Vic, Australia
[11] Univ Melbourne, Dept Paediat, Melbourne, Vic, Australia
[12] Royal Childrens Hosp, Neonatol, Parkville, Vic, Australia
[13] UCL, Dept Med Phys & Biomed Engn, London, England
[14] Middlesex Univ, Dept Nat Sci, London, England
基金
英国医学研究理事会;
关键词
EIT; electrical impedance; respiratory system; electrode rotation; electrode spacing; neonatal lung imaging; EIT belt; electrodes; positive end-expiratory pressure; LUNG-VOLUME; REGIONAL VENTILATION; SUSTAINED INFLATION; EIT; PRETERM; TIME; RECRUITMENT; PRESSURE; POSITION; INFANTS;
D O I
10.1088/1361-6579/ab7b42
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Objective: Non-adhesive textile electrode belts offer several advantages over adhesive electrodes and are increasingly used in neonatal patients during continuous electrical impedance tomography (EIT) lung monitoring. However, non-adhesive belts may rotate in unsedated patients and discrepancies between chest circumference and belt sizes may result in a gap between electrodes near the sternum. This project aimed to determine the effects of belt rotation and sternal electrode gap on commonly used lung EIT parameters. Approach: We developed a simulation framework based on a 3D finite-element model and introduced lung regions with little or no ventilation that could be changed according to a decremental positive end-expiratory pressure (PEEP) trial. Four degrees of sternal gap and belt rotation were simulated and their effect on the EIT parameters silent spaces, centre of ventilation, global inhomogeneity index and overdistension/collapsed lung (OD/CL) analysed. Additionally, seven premature infants were examined to assess the influence of leftward and rightward belt rotations in a clinical setting. Main results: Small violations of the electrode equidistance criterion and rotations of the belts less than one electrode space exert only minor effects on the EIT parameters and do not impede the interpretation. Rotations of two and three electrode spaces induce non-negligible effects that might lead to flawed interpretations. The 'best PEEP' determined with the OD/CL approach was robust and identifiable with all studied sternal gaps and belt rotations.
引用
收藏
页数:11
相关论文
共 53 条
  • [1] Whither lung EIT: Where are we, where do we want to go and what do we need to get there?
    Adler, Andy
    Amato, Marcelo B.
    Arnold, John H.
    Bayford, Richard
    Bodenstein, Marc
    Boehm, Stephan H.
    Brown, Brian H.
    Frerichs, Inez
    Stenqvist, Ola
    Weiler, Norbert
    Wolf, Gerhard K.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2012, 33 (05) : 679 - 694
  • [2] GREIT: a unified approach to 2D linear EIT reconstruction of lung images
    Adler, Andy
    Arnold, John H.
    Bayford, Richard
    Borsic, Andrea
    Brown, Brian
    Dixon, Paul
    Faes, Theo J. C.
    Frerichs, Inez
    Gagnon, Herve
    Gaerber, Yvo
    Grychtol, Bartlomiej
    Hahn, Guenter
    Lionheart, William R. B.
    Malik, Anjum
    Patterson, Robert P.
    Stocks, Janet
    Tizzard, Andrew
    Weiler, Norbert
    Wolf, Gerhard K.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2009, 30 (06) : S35 - S55
  • [3] Errors in reconstruction of resistivity images using a linear reconstruction technique
    Barber, D.C.
    Brown, B.H.
    [J]. Clinical Physics and Physiological Measurement, 1988, 9 (SUPPL. A): : 101 - 104
  • [4] Bioimpedance tomography (Electrical impedance tomography)
    Bayford, R. H.
    [J]. ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2006, 8 : 63 - 91
  • [5] Methods for calculating the electrode position Jacobian for impedance imaging
    Boyle, A.
    Crabb, M. G.
    Jehl, M.
    Lionheart, W. R. B.
    Adler, A.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2017, 38 (03) : 555 - 574
  • [6] Limitations and challenges of EIT-based monitoring of stroke volume and pulmonary artery pressure
    Braun, Fabian
    Proenca, Martin
    Lemay, Mathieu
    Bertschi, Mattia
    Adler, Andy
    Thiran, Jean-Philippe
    Sola, Josep
    [J]. PHYSIOLOGICAL MEASUREMENT, 2018, 39 (01)
  • [7] APPLIED POTENTIAL TOMOGRAPHY - POSSIBLE CLINICAL-APPLICATIONS
    BROWN, BH
    BARBER, DC
    SEAGAR, AD
    [J]. CLINICAL PHYSICS AND PHYSIOLOGICAL MEASUREMENT, 1985, 6 (02): : 109 - 121
  • [8] Chatziioannidis I, 2011, HIPPOKRATIA
  • [9] Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography
    Costa, Eduardo L. V.
    Borges, Joao Batista
    Melo, Alexandre
    Suarez-Sipmann, Fernando
    Toufen, Carlos, Jr.
    Bohm, Stephan H.
    Amato, Marcelo B. P.
    [J]. INTENSIVE CARE MEDICINE, 2009, 35 (06) : 1132 - 1137
  • [10] de la Oliva P, 2017, A A CASE REP, V8, P316, DOI 10.1213/XAA.0000000000000499