Simultaneous performance achievement via compensator blending

被引:9
作者
Blanchini, Franco [1 ]
Colaneri, Patrizio [2 ]
Pellegrino, Felice Andrea [3 ]
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
[2] Dipartimento Elettron & Informaz, I-20133 Milan, Italy
[3] Univ Trieste, Dipartimento Elettrontecn Elettron & Informat, I-34127 Trieste, Italy
关键词
optimal control; mixed-objective control; constrained control; robustness;
D O I
10.1016/j.automatica.2007.04.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the problem of designing a state-feedback controller that simultaneously achieves different optimality criteria defined on different input-output pairs. Precisely, if r "optimal" target transfer functions are given (as the result of local "optimal" controllers), it is shown that (under mild assumptions) there exists a unique controller capable of replicating these transfer functions in the closed-loop system, so simultaneously achieving the performances inherited by the chosen local transfer functions. An explicit and constructive procedure (we refer to such procedure as "compensator blending") is provided. The possibility of designing a stable blending compensator or the generalization to dynamic local controllers or time varying systems are also discussed. We finally consider the dual version of the problem, precisely, we show how to achieve simultaneous optimality by filter blending. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 27 条
[1]  
Abedor J, 1996, INT J ROBUST NONLIN, V6, P899, DOI 10.1002/(SICI)1099-1239(199611)6:9/10<899::AID-RNC259>3.0.CO
[2]  
2-G
[3]  
BLACHINI F, 2006, IEEE T AUTOMATIC CON, V51, P183
[4]   Relatively optimal control and its linear implementation [J].
Blanchini, F ;
Pellegrino, FA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (12) :2151-2162
[5]   Solutions to disturbance decoupling problem with constant measurement feedback for linear systems [J].
Chen, BM ;
Mareels, IMY ;
Zheng, YF ;
Zhang, CS .
AUTOMATICA, 2000, 36 (11) :1717-1724
[6]   Disturbance decoupling for linear time-invariant systems: a matrix pencil approach [J].
Chu, D ;
Mehrmann, V .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (05) :802-808
[7]   A novel numerical method for exact model matching problem with stability [J].
Chu, Delin ;
Van Dooren, Paul .
AUTOMATICA, 2006, 42 (10) :1697-1704
[8]   Disturbance decoupling for descriptor systems by state feedback [J].
Chu, DL ;
Mehrmann, V .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (06) :1830-1858
[9]  
COLANERI P, 1997, CONTROL THEORY DESIG
[10]   L1-OPTIMAL FEEDBACK CONTROLLERS FOR MIMO DISCRETE-TIME-SYSTEMS [J].
DAHLEH, MA ;
PEARSON, JB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (04) :314-322