Effect of Ferrite/Martensite on Microstructure Evolution and Mechanical Properties of Ultrafine Vanadium Dual-Phase Steel

被引:11
|
作者
Nawaz, Bilal [1 ]
Long, Xiaoyan [1 ]
Li, Yanguo [1 ]
Yang, Zhinan [2 ]
Zhang, Fucheng [1 ,2 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Natl Engn Res Ctr Equipment & Technol Cold Strip, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
D; P steel; intercritical temperature; precipitates; strain-hardening; STRENGTHENING MECHANISMS; NANO-PRECIPITATION; TENSILE BEHAVIOR; MARTENSITE; DEFORMATION; DUCTILITY; SIZE; CR; MORPHOLOGY; TOUGHNESS;
D O I
10.1007/s11665-021-06550-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ultrafine-grained dual-phase ferrite/martensite steel produced through intercritical annealing at 765, 775 and 795 degrees C. The microstructures at all temperatures consisted of ultrafine ferrite, martensite and carbides. Carbides were found in two different morphologies, alloy carbides and V(C, N). The grain size of ferrite was decreased to 0.83 +/- 0.3 mu m when the intercritical temperature was increased to 795 degrees C. Higher kinetics of phase transition from ferrite to austenite and ferrite grains growth restriction by alloy carbides and V(C, N) carbides reduced the ferrite size. The maximum yield strength of 1710 +/- 15 MPa with total elongation of 11.5 +/- 0.3% was achieved at 795 degrees C. The larger volume fraction of martensite, smaller ferrite grain size and smaller (FeMnCr)3C particles improved the yield strength. Despite the higher ferrite grain size and higher carbon content in martensite, the maximum strain hardening rate was attained at 765 degrees C. Higher amount of carbides increased the strain hardening rate at 765 degrees C. The strengthening mechanism of dual-phase steels at each intercritical temperature was studied and strength contribution from each strengthening factor was calculated. The calculated results at each temperature were agreed well with the experimental results.
引用
收藏
页码:4305 / 4317
页数:13
相关论文
共 50 条
  • [31] MODELING OF A DUAL-PHASE STEEL FROM ITS FERRITE AND MARTENSITE CONSTITUENTS
    PUSSEGODA, LN
    TYSON, WR
    CANADIAN METALLURGICAL QUARTERLY, 1984, 23 (03) : 341 - 347
  • [32] Origin of hydrogen embrittlement in ferrite-martensite dual-phase steel
    Manda, Sanjay
    Kumar, Saurabh
    Tripathy, Rasmi R.
    Sudhalkar, Bhargav
    Pai, Namit N.
    Basu, Soudip
    Durgaprasad, A.
    Vijayshankar, Dandapani
    Panwar, Ajay S.
    Samajdar, Indradev
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 100 : 1266 - 1281
  • [33] Stretching the mechanical properties in a 590MPa ferrite-martensite dual-phase steel through rapid heating
    Deng, Yonggang
    Di, Hongshuang
    Zhang, Jiecen
    Misra, R. D. K.
    METALLURGICAL RESEARCH & TECHNOLOGY, 2017, 114 (05)
  • [34] Microstructure Evolution and Mechanical Properties of 780 MPa Hot Dip Galvanized Dual-Phase Steel
    Li, Guo Bin
    Zhao, Zheng Zhi
    Tang, Di
    ADVANCES IN SUPERALLOYS, PTS 1 AND 2, 2011, 146-147 : 1331 - +
  • [35] Study on the properties of martensite and bainite dual-phase microstructure of carburized medium carbon steel
    Shu, Li
    Ma, Sichun
    He, Xiaoming
    Jinshu Rechuli Xuebao/Transactions of Metal Heat Treatment, 1993, 14 (02):
  • [36] Correlation of ferrite and martensite micromechanical behavior with mechanical properties of ultrafine grained dual phase steels
    Jahanara, Amir Hossein
    Mazaheri, Yousef
    Sheikhi, Mohsen
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 764
  • [37] Effect of deep cryogenic treatment parameters on martensite multi-level microstructures and properties in a lath martensite/ferrite dual-phase steel
    Fan, Shichao
    Hao, Hai
    Meng, Linggang
    Zhang, Xingguo
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 810 (810):
  • [38] THE EFFECT OF MARTENSITE CONTENT ON THE FATIGUE OF A DUAL-PHASE STEEL
    SHERMAN, AM
    DAVIES, RG
    INTERNATIONAL JOURNAL OF FATIGUE, 1981, 3 (01) : 36 - 40
  • [39] EFFECT OF BORON ON THE MICROSTRUCTURE AND TENSILE PROPERTIES OF DUAL-PHASE STEEL
    SHEN, XP
    PRIESTNER, R
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1990, 21 (09): : 2547 - 2554
  • [40] Influence of rapid heating process on the microstructure and tensile properties of high-strength ferrite-martensite dual-phase steel
    Li, Pei
    Li, Jun
    Meng, Qing-ge
    Hu, Wen-bin
    Kuang, Chun-fu
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2015, 22 (09) : 933 - 941