Effect of Ferrite/Martensite on Microstructure Evolution and Mechanical Properties of Ultrafine Vanadium Dual-Phase Steel

被引:11
|
作者
Nawaz, Bilal [1 ]
Long, Xiaoyan [1 ]
Li, Yanguo [1 ]
Yang, Zhinan [2 ]
Zhang, Fucheng [1 ,2 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Natl Engn Res Ctr Equipment & Technol Cold Strip, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
D; P steel; intercritical temperature; precipitates; strain-hardening; STRENGTHENING MECHANISMS; NANO-PRECIPITATION; TENSILE BEHAVIOR; MARTENSITE; DEFORMATION; DUCTILITY; SIZE; CR; MORPHOLOGY; TOUGHNESS;
D O I
10.1007/s11665-021-06550-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ultrafine-grained dual-phase ferrite/martensite steel produced through intercritical annealing at 765, 775 and 795 degrees C. The microstructures at all temperatures consisted of ultrafine ferrite, martensite and carbides. Carbides were found in two different morphologies, alloy carbides and V(C, N). The grain size of ferrite was decreased to 0.83 +/- 0.3 mu m when the intercritical temperature was increased to 795 degrees C. Higher kinetics of phase transition from ferrite to austenite and ferrite grains growth restriction by alloy carbides and V(C, N) carbides reduced the ferrite size. The maximum yield strength of 1710 +/- 15 MPa with total elongation of 11.5 +/- 0.3% was achieved at 795 degrees C. The larger volume fraction of martensite, smaller ferrite grain size and smaller (FeMnCr)3C particles improved the yield strength. Despite the higher ferrite grain size and higher carbon content in martensite, the maximum strain hardening rate was attained at 765 degrees C. Higher amount of carbides increased the strain hardening rate at 765 degrees C. The strengthening mechanism of dual-phase steels at each intercritical temperature was studied and strength contribution from each strengthening factor was calculated. The calculated results at each temperature were agreed well with the experimental results.
引用
收藏
页码:4305 / 4317
页数:13
相关论文
共 50 条
  • [1] Effect of Ferrite/Martensite on Microstructure Evolution and Mechanical Properties of Ultrafine Vanadium Dual-Phase Steel
    Bilal Nawaz
    Xiaoyan Long
    Yanguo Li
    Zhinan Yang
    Fucheng Zhang
    Journal of Materials Engineering and Performance, 2022, 31 : 4305 - 4317
  • [2] Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure
    Li, Rutao
    Zuo, Xiurong
    Hu, Yueyue
    Wang, Zhenwei
    Hu, Dingxu
    MATERIALS CHARACTERIZATION, 2011, 62 (08) : 801 - 806
  • [3] Fracture evolution in ferrite/martensite dual-phase flange steel
    Liang, Wen
    Yuan, Qing
    Chen, Guanghui
    Liu, Man
    Qiao, Wenwei
    IRONMAKING & STEELMAKING, 2021, 48 (01) : 88 - 96
  • [4] Microstructure Distribution Parameters for Ferrite-Martensite Dual-Phase Steel
    Yu, M.
    Gou, R. B.
    Dan, W. J.
    Zhang, S. S.
    Jiang, T.
    Chen, S.
    Lu, C.
    Zhang, J. X.
    STRENGTH OF MATERIALS, 2021, 53 (01) : 173 - 182
  • [5] Microstructure Distribution Parameters for Ferrite-Martensite Dual-Phase Steel
    M. Yu
    R. B. Gou
    W. J. Dan
    S. S. Zhang
    T. Jiang
    S. Chen
    C. Lu
    J. X. Zhang
    Strength of Materials, 2021, 53 : 173 - 182
  • [6] Ultrafine grained dual-phase martensite/ferrite steel strengthened and toughened by lamella structure
    Sun, Junjie
    Jiang, Tao
    Wang, Yingjun
    Guo, Shengwu
    Liu, Yongning
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 734 : 311 - 317
  • [7] MICROSTRUCTURE AND MECHANICAL PROPERTIES OF DUAL-PHASE STEEL
    Miernik, K.
    Pytel, S.
    ARCHIVES OF METALLURGY AND MATERIALS, 2014, 59 (04) : 1257 - 1261
  • [8] Research of Strain Aging in Pipeline Steel with a Ferrite/Martensite Dual-Phase Microstructure
    Zuo, Xiurong
    Li, Rutao
    STEEL RESEARCH INTERNATIONAL, 2015, 86 (02) : 163 - 168
  • [9] EFFECT OF FERRITE MORPHOLOGY ON THE MECHANICAL PROPERTIES OF 40Cr STEEL WITH MARTENSITE-FERRITE DUAL-PHASE STRUCTURE.
    Liu, Yan-qing
    Liu, Jing-hua
    Shen, Lian
    Song, Yu-jiu
    Jinshu Rechuli/Heat Treatment of Metals, 1987, (09): : 9 - 15
  • [10] Mechanical properties of dual-phase steel with long, fibrous martensite
    Sun, S
    Pugh, M
    METAL WELDING AND APPLICATIONS: THERMOMECHANICAL PROCESSING OF ALLOYS, 1999, : 439 - 448