Thermal Transport in Graphene and Graphene-based Composites

被引:1
作者
Hu, Jiuning [1 ,2 ]
Park, Wonjun [1 ,2 ]
Ruan, Xiulin [2 ,3 ]
Chen, Yong P. [1 ,2 ,4 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
来源
GRAPHENE, GE/III-V, AND EMERGING MATERIALS FOR POST CMOS APPLICATIONS 5 | 2013年 / 53卷 / 01期
关键词
MOLECULAR-DYNAMICS; LAYER GRAPHENE; CONDUCTIVITY; NANORIBBONS; RECTIFICATION; HYDROCARBONS; ENERGY;
D O I
10.1149/05301.0041ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We theoretically and experimentally studied the thermal transport properties in various graphene-based systems. Firstly, we review our previous works of molecular dynamics simulations to study the thermal transport in graphene nanoribbons (GNRs). We also studied negative differential thermal conductance (NDTC) at large temperature biases in GNRs. We extended our study of NDTC in the diffusive limit into general one-dimensional thermal transport and found that NDTC is possible if thermal junctions are introduced. These findings are useful for future applications of controlling heat at nanoscale. Secondly, we describe our experimental work of synthesized graphene-based composites with fillers of reduced graphene oxide and polymers. We used 3 omega method to measure the thermal conductivity and found that the thermal conductivity can be tuned dramatically by the graphene filler concentration. Graphene-based composites are potentially promising as thermal interface materials, which have become increasingly important in modern heat management in many industrial applications.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 55 条
[1]   Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering [J].
Aksamija, Z. ;
Knezevic, I. .
APPLIED PHYSICS LETTERS, 2011, 98 (14)
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[4]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[5]   Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites [J].
Bryning, MB ;
Milkie, DE ;
Islam, MF ;
Kikkawa, JM ;
Yodh, AG .
APPLIED PHYSICS LETTERS, 2005, 87 (16) :1-3
[6]   THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD [J].
CAHILL, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) :802-808
[7]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[8]   Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometries [J].
Cao, Ajing .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (08)
[9]   Unexpected large thermal rectification in asymmetric grain boundary of graphene [J].
Cao, Hai-Yuan ;
Xiang, Hongjun ;
Gong, Xin-Gao .
SOLID STATE COMMUNICATIONS, 2012, 152 (19) :1807-1810
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162