A generalized modified HSS method for singular complex symmetric linear systems

被引:6
作者
Chao, Zhen [1 ]
Chen, Guo-Liang [1 ]
机构
[1] East China Normal Univ, Dept Math, Shanghai Key Lab Pure Math & Math Practice, Dongchuan RD 500, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Singular complex linear system; Semi-convergence; Iteration method; Hermitian and skew-Hermitian splitting; MHSS METHOD;
D O I
10.1007/s11075-015-0086-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the Hermitian and skew-Hermitian splitting, we give a generalized modified Hermitian and skew-Hermitian splitting (GMHSS) method to solve singular complex symmetric linear systems, this method has two parameters. We give the semi-convergent conditions, and some numerical experiments are given to illustrate the efficiency of this method.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 1979, Generalized inverses of linear transformations
[2]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[3]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[4]   On preconditioned MHSS iteration methods for complex symmetric linear systems [J].
Bai, Zhong-Zhi ;
Benzi, Michele ;
Chen, Fang .
NUMERICAL ALGORITHMS, 2011, 56 (02) :297-317
[5]   On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems [J].
Bai, Zhong-Zhi .
COMPUTING, 2010, 89 (3-4) :171-197
[6]   Modified HSS iteration methods for a class of complex symmetric linear systems [J].
Bai, Zhong-Zhi ;
Benzi, Michele ;
Chen, Fang .
COMPUTING, 2010, 87 (3-4) :93-111
[7]   Hermitian and skew-Hermitian splitting methods for non-hermitian positive definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Ng, MK .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :603-626
[8]   Block preconditioning of real-valued iterative algorithms for complex linear systems [J].
Benzi, Michele ;
Bertaccini, Daniele .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (03) :598-618
[9]   A generalized preconditioned HSS method for singular saddle point problems [J].
Chao, Zhen ;
Zhang, Naimin .
NUMERICAL ALGORITHMS, 2014, 66 (02) :203-221
[10]   On semi-convergence of modified HSS iteration methods [J].
Chen, Fang ;
Liu, Qing-Quan .
NUMERICAL ALGORITHMS, 2013, 64 (03) :507-518