Asymptotic properties of the maximum likelihood estimator for spatio-temporal point processes

被引:43
作者
Rathbun, SL [1 ]
机构
[1] UNIV GEORGIA,DEPT STAT,ATHENS,GA 30602
关键词
consistency; asymptotic normality; self-exciting point process; self-correcting point process; seismology;
D O I
10.1016/0378-3758(95)00070-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a spatio-temporal point process whose events occur at times in the interval CO, T1 and at corresponding locations in a region X. Such processes can be modeled through their conditional intensity function Lambda((s) under tilde,t;<(theta)under tilde>); 0 less than or equal to t less than or equal to T,(s) under tilde epsilon X. This article shows that the maximum likelihood estimator <(theta)under tilde>(T)<(theta)over cap> is consistent and asymptotically normally distributed as T --> infinity. These results extend those of Ogata (Ann. Inst. Statist. Math. 30A (1978), 243-261), who considered purely temporal pointproceses. The asymptotic properties of <(theta)under tilde>(T)<(theta)under tilde> are considered for a spatiotemporal self-exiciting point process. Methods for modeling spatio-temporal point patterns are illustrated on seismological data.
引用
收藏
页码:55 / 74
页数:20
相关论文
共 37 条
  • [1] [Anonymous], 1972, J AUST MATH SOC
  • [2] Berman M., 1983, B INT STAT I, V50, P412
  • [3] Bremaud P., 1981, Point Processes and Queues: Martingale Dynamics
  • [4] MAXIMUM-LIKELIHOOD IDENTIFICATION OF NEURAL POINT PROCESS SYSTEMS
    CHORNOBOY, ES
    SCHRAMM, LP
    KARR, AF
    [J]. BIOLOGICAL CYBERNETICS, 1988, 59 (4-5) : 265 - 275
  • [5] Chung K. L., 1967, MARKOV CHAINS STATIO
  • [6] Daley D. J., 2002, INTRO THEORY POINT P
  • [7] Dellacherie C., 1972, Capacites et Processus Stochastiques. Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge
  • [8] STOCHASTIC KINEMATIC STUDY OF SUBSYNOPTIC SPACE-TIME RAINFALL
    GUPTA, VK
    WAYMIRE, EC
    [J]. WATER RESOURCES RESEARCH, 1979, 15 (03) : 637 - 644
  • [9] Gutenberg B., 1944, Bull. Seismol. Soc. Amer, V34, P185, DOI [10.1785/BSSA0340040185, DOI 10.1785/BSSA0340040185]
  • [10] HAWKES AG, 1971, BIOMETRIKA, V58, P83, DOI 10.1093/biomet/58.1.83