Random periodic solution for a stochastic SIS epidemic model with constant population size

被引:14
|
作者
Zhao, Dianli [1 ]
Yuan, Sanling [1 ]
Liu, Haidong [2 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2018年
关键词
Stochastic SIS epidemic model; Random periodic solution; Constant population size; Persistence; Extinction; NONLINEAR INCIDENCE; PERTURBATION; EXTINCTION; THRESHOLD; BEHAVIOR;
D O I
10.1186/s13662-018-1511-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a stochastic susceptible-infected-susceptible (SIS) epidemic model with periodic coefficients is formulated. Under the assumption that the total population is fixed by N, an analogue of the threshold R-0(T) is identified. If R-0(T) > 1, themodel is proved to admit at least one random periodic solution which is nontrivial and located in (0, N) x(0, N). Further, the conditions for persistence and extinction of the disease are also established, where a threshold is given in the case that the noise is small. Comparing with the threshold of the autonomous SIS model, it is generalized to its averaged value in one period. The random periodic solution is illuminated by computer simulations.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Random periodic solution for a stochastic SIS epidemic model with constant population size
    Dianli Zhao
    Sanling Yuan
    Haidong Liu
    Advances in Difference Equations, 2018
  • [2] On the stochastic SIS epidemic model in a periodic environment
    Bacaer, Nicolas
    JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 71 (02) : 491 - 511
  • [3] On the stochastic SIS epidemic model in a periodic environment
    Nicolas Bacaër
    Journal of Mathematical Biology, 2015, 71 : 491 - 511
  • [4] The stochastic SIS epidemic model in a random environment
    Bacaer, Nicolas
    JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 73 (04) : 847 - 866
  • [5] A Note on the Stationary Distribution of Stochastic SIS Epidemic Model with Vaccination Under Regime Switching
    Hu, Junna
    Li, Zhiming
    Zeng, Ting
    Teng, Zhidong
    FILOMAT, 2018, 32 (13) : 4773 - 4785
  • [6] The threshold of a stochastic SIS epidemic model with imperfect vaccination
    Liu, Qun
    Jiang, Daqing
    Shi, Ningzhong
    Hayat, Tasawar
    Alsaedi, Ahmed
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 144 : 78 - 90
  • [7] The extinction and persistence of the stochastic SIS epidemic model with vaccination
    Zhao, Yanan
    Jiang, Daqing
    O'Regan, Donal
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (20) : 4916 - 4927
  • [8] Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients
    Rifhat, Ramziya
    Wang, Lei
    Teng, Zhidong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 481 : 176 - 190
  • [9] A STOCHASTIC DIFFERENTIAL EQUATION SIS EPIDEMIC MODEL
    Gray, A.
    Greenhalgh, D.
    Hu, L.
    Mao, X.
    Pan, J.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (03) : 876 - 902
  • [10] Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates
    Gao, Ning
    Song, Yi
    Wang, Xinzeng
    Liu, Jianxin
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)