REAL ZEROS AND NORMAL DISTRIBUTION FOR STATISTICS ON STIRLING PERMUTATIONS DEFINED BY GESSEL AND STANLEY

被引:42
作者
Bona, Miklos [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
permutations; multisets; descents; normal distribution; real zeros;
D O I
10.1137/070702254
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Stirling permutations defined by Gessel and Stanley in [J. Combin. Theory Ser. A, 24 (1978), pp. 25-33]. We prove that their generating function according to the number of descents has real roots only. We use that fact to prove that the distribution of these descents and other equidistributed statistics on these objects converge to a normal distribution.
引用
收藏
页码:401 / 406
页数:6
相关论文
共 9 条
[1]  
Bender E. A., 1973, J COMB THEORY A, V15, P91
[2]  
Bona M., 2004, Combinatorics of Permutations
[3]  
CANFIELD ER, 1977, J COMB THEORY A, V23, P275
[4]   ON DISTRIBUTION OF NUMBER OF SUCCESSES IN INDEPENDENT TRIALS [J].
DARROCH, JN .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (03) :1317-&
[5]   STIRLING POLYNOMIALS [J].
GESSEL, I ;
STANLEY, RP .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (01) :24-33
[6]  
JANSON S, GEN STIRLING PERMUTA
[7]  
JANSON S, PLANE RECURSIVE TREE
[8]  
JU H, 2007, COMMUNICATION
[9]  
[No title captured]