DeepGx: Deep Learning Using Gene Expression for Cancer Classification

被引:47
|
作者
de Guia, Joseph M. [1 ,2 ]
Devaraj, Madhavi [1 ]
Leung, Carson K. [2 ]
机构
[1] Mapua Univ, Sch Informat Technol, Manila, Philippines
[2] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
来源
PROCEEDINGS OF THE 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2019) | 2019年
基金
加拿大自然科学与工程研究理事会;
关键词
deep learning; machine learning; neural network; convolutional neural network (CNN); gene expression; ribonucleic acid sequencing (RNA-seq); bioinformatics;
D O I
10.1145/3341161.3343516
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to explore the problems associated in solving the classification of cancer in gene expression data using deep learning model. Our proposed solution for the cancer classification of ribonucleic acid sequencing (RNA-seq) extracted from the Pan-Cancer Atlas is to transform the 1-dimensional (1D) gene expression values into 2-dimensional (2D) images. This solution of embedding the gene expression values into a 2D image considers the overall features of the genes and computes features that are needed in the classification task of the deep learning model by using the convolutional neural network (CNN). When training and testing the 33 cohorts of cancer types in the convolutional neural network, our classification model led to an accuracy of 95.65%. This result is reasonably good when compared with existing works that use multiclass label classification. We also examine the genes based on their significance related to cancer types through the heat map and associate them with biomarkers. Our CNN for the classification task fosters the deep learning framework in the cancer genome analysis and leads to better understanding of complex features in cancer disease.
引用
收藏
页码:913 / 920
页数:8
相关论文
共 50 条
  • [21] Deep Learning-based Identification of Cancer or Normal Tissue using Gene Expression Data
    Ahn, TaeJin
    Goo, Taewan
    Lee, Chan-hee
    Kim, SungMin
    Han, Kyullhee
    Park, Sangick
    Park, Taesung
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 1748 - 1752
  • [22] Cervical Cancer Classification Using Combined Machine Learning and Deep Learning Approach
    Alquran, Hiam
    Mustafa, Wan Azani
    Abu Qasmieh, Isam
    Yacob, Yasmeen Mohd
    Alsalatie, Mohammed
    Al-Issa, Yazan
    Alqudah, Ali Mohammad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 5117 - 5134
  • [23] Breast Cancer Classification Using Deep Learning
    Jasmir
    Nurmaini, Siti
    Malik, Reza Firsandaya
    Abidin, Dodo Zaenal
    Zarkasi, Ahmad
    Kunang, Yesi Novaria
    Firdaus
    2018 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS), 2018, : 237 - 241
  • [24] MetastaSite: Predicting metastasis to different sites using deep learning with gene expression data
    Albaradei, Somayah
    Albaradei, Abdurhman
    Alsaedi, Asim
    Uludag, Mahmut
    Thafar, Maha A.
    Gojobori, Takashi
    Essack, Magbubah
    Gao, Xin
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [25] Machine Learning Methods for Cancer Classification Using Gene Expression Data: A Review
    Alharbi, Fadi
    Vakanski, Aleksandar
    BIOENGINEERING-BASEL, 2023, 10 (02):
  • [26] Earthquake Event Classification Using Multitasking Deep Learning
    Ku, Bonhwa
    Min, Jeungki
    Ahn, Jae-Kwang
    Lee, Jimin
    Ko, Hanseok
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (07) : 1149 - 1153
  • [27] Prediction of lung cancer using gene expression and deep learning with KL divergence gene selection
    Liu, Suli
    Yao, Wu
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [28] Prediction of lung cancer using gene expression and deep learning with KL divergence gene selection
    Suli Liu
    Wu Yao
    BMC Bioinformatics, 23
  • [29] Gene expression data classification using topology and machine learning models
    Tamal K. Dey
    Sayan Mandal
    Soham Mukherjee
    BMC Bioinformatics, 22
  • [30] An Optimized Framework for Cancer Classification Using Deep Learning and Genetic Algorithm
    Sharma, Aman
    Rani, Rinkle
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (08) : 1851 - 1856