On Wald Residuals in Generalized Linear Models

被引:4
作者
Urbano, Mariana Ragassi [1 ]
Borges Demetrio, Clarice Garcia [1 ]
Cordeiro, Gauss Moutinho [2 ]
机构
[1] Univ Sao Paulo, Dept Ciencias Exatas, Escola Super Agr Luiz de Queiroz, BR-13418900 Piracicaba, Brazil
[2] Univ Fed Rural Pernambuco, Dept Estat & Informat, Recife, PE, Brazil
关键词
Adjusted Wald residual; Bias correction; Exponential family; Generalized linear model; Link function; Taylor series expansion; Wald residual; NONLINEAR MODELS;
D O I
10.1080/03610926.2010.529537
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A rigorous asymptotic theory for Wald residuals in generalized linear models is not yet available. The authors provide matrix formulae of order O(n(-1)), where n is the sample size, for the first two moments of these residuals. The formulae can be applied to many regression models widely used in practice. The authors suggest adjusted Wald residuals to these models with approximately zero mean and unit variance. The expressions were used to analyze a real dataset. Some simulation results indicate that the adjusted Wald residuals are better approximated by the standard normal distribution than the Wald residuals.
引用
收藏
页码:741 / 758
页数:18
相关论文
共 50 条
[41]   Generalized Empirical Likelihood Inference in Generalized Linear Models for Longitudinal Data [J].
Tian, Ruiqin ;
Xue, Liugen .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (18) :3893-3904
[42]   Prior distribution elicitation for generalized linear and piecewise-linear models [J].
Garthwaite, Paul H. ;
Al-Awadhi, Shafeeqah A. ;
Elfadaly, Fadlalla G. ;
Jenkinson, David J. .
JOURNAL OF APPLIED STATISTICS, 2013, 40 (01) :59-75
[43]   Bias-Corrected Inference of High-Dimensional Generalized Linear Models [J].
Tang, Shengfei ;
Shi, Yanmei ;
Zhang, Qi .
MATHEMATICS, 2023, 11 (04)
[44]   Second-Order Covariance Matrix Formula for Heteroskedastic Generalized Linear Models [J].
Barroso, Lucia P. ;
Botter, Denise A. ;
Cordeiro, Gauss M. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (09) :1618-1627
[45]   Adjusted Pearson residuals in exponential family nonlinear models [J].
Simas, Alexandre B. ;
Cordeiro, Gauss M. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (04) :411-425
[46]   Hierarchical generalized linear models and frailty models with Bayesian nonparametric mixing [J].
Walker, SG ;
Mallick, BK .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1997, 59 (04) :845-860
[47]   Robust and efficient estimation of nonparametric generalized linear models [J].
Kalogridis, Ioannis ;
Claeskens, Gerda ;
Van Aelst, Stefan .
TEST, 2023, 32 (03) :1055-1078
[48]   Inference in generalized linear regression models with a censored covariate [J].
Tsimikas, John V. ;
Bantis, Leonidas E. ;
Georgiou, Stelios D. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) :1854-1868
[49]   Empirical likelihood for generalized linear models with missing responses [J].
Xue, Dong ;
Xue, Liugen ;
Cheng, Weihu .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) :2007-2020
[50]   Goodness of Fit for Generalized Linear Latent Variables Models [J].
Conne, David ;
Ronchetti, Elvezio ;
Victoria-Feser, Maria-Pia .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) :1126-1134