Convergence of U-Statistics for Interacting Particle Systems

被引:5
作者
Del Moral, P. [2 ,3 ]
Patras, F. [1 ]
Rubenthaler, S. [1 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, Lab Math JA Dieudonne, UMR 6621, F-06108 Nice 2, France
[2] Univ Bordeaux 1, Ctr INRIA Bordeaux Sud Ouest, F-33405 Talence, France
[3] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
关键词
Interacting particle systems; Feynman-Kac models; U-statistics; Fluctuations; Limit theorems;
D O I
10.1007/s10959-011-0355-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The convergence of U-statistics has been intensively studied for estimators based on families of i.i.d. random variables and variants of them. In most cases, the independence assumption is crucial (Lee in Statistics: Textbooks and Monographs, vol. 10, Dekker, New York, 1990; de la Pea and Gin, in Decoupling. Probability and Its Application, Springer, New York, 1999). When dealing with Feynman-Kac and other interacting particle systems of Monte Carlo type, one faces a new type of problem. Namely, in a sample of N particles obtained through the corresponding algorithms, the distributions of the particles are correlated-although any finite number of them is asymptotically independent with respect to the total number N of particles. In the present article, exploiting the fine asymptotics of particle systems, we prove convergence theorems for U-statistics in this framework.
引用
收藏
页码:1002 / 1027
页数:26
相关论文
共 13 条
  • [1] [Anonymous], 2004, PROB APPL S
  • [2] [Anonymous], 1990, STAT TXB MONOGRAPHS
  • [3] de la Pena V. H., 1999, DECOUPLING PROBABILI
  • [4] Strong propagations of chaos in Moran's type particle interpretations of Feynman-Kac measures
    Del Moral, P.
    Miclo, L.
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (03) : 519 - 575
  • [5] Del Moral P, 2000, LECT NOTES MATH, V1729, P2
  • [6] TREE BASED FUNCTIONAL EXPANSIONS FOR FEYNMAN-KAC PARTICLE MODELS
    Del Moral, Pierre
    Patras, Frederic
    Rubenthaler, Sylvain
    [J]. ANNALS OF APPLIED PROBABILITY, 2009, 19 (02) : 778 - 825
  • [7] SYMMETRIC STATISTICS, POISSON POINT-PROCESSES, AND MULTIPLE WIENER INTEGRALS
    DYNKIN, EB
    MANDELBAUM, A
    [J]. ANNALS OF STATISTICS, 1983, 11 (03) : 739 - 745
  • [8] Itzykson C., 1980, INT SERIES PURE APPL
  • [9] Peskin M., 1995, An Introduction to quantum field theory
  • [10] Rota GC, 1997, ANN PROBAB, V25, P1257