Liouville theorems for entire local minimizers of energies defined on the class L log L and for entire solutions of the stationary Prandtl-Eyring fluid model

被引:12
作者
Fuchs, Martin [1 ]
Zhang, Guo [2 ]
机构
[1] Univ Saarland, Fachbereich Math 6 1, D-66041 Saarbrucken, Germany
[2] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland
基金
芬兰科学院;
关键词
FULL C-1; C-ALPHA-REGULARITY; VARIATIONAL INTEGRALS; REGULARITY; SYSTEMS;
D O I
10.1007/s00526-011-0434-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If u : R-n -> R-M locally minimizes the energy with density |del u| ln(1 + |del u|),, then we show that the boundedness of the function u already implies its constancy. The same is true in case n = M = 2 for entire solutions of the equations modelling the stationary flow of a so-called Prandtl-Eyring fluid. Moreover, in the variational setting we will present various extensions of the above mentioned Liouville theorem for entire local minimizers valid in any dimensions n and M.
引用
收藏
页码:271 / 295
页数:25
相关论文
共 24 条
  • [1] Adams R., 1985, Sobolev Spaces
  • [2] [Anonymous], 1998, Grundlehren der mathematischen Wissenschaften
  • [3] [Anonymous], 1994, Springer Tracts in Natural Philosophy
  • [4] Apushkinskaya D., 2010, J. Math. Sci. (N. Y.), V164, P345, DOI DOI 10.1007/S10958-009-9751-1
  • [5] Partial regularity for minimizers of convex integrals with L log L-growth
    Esposito, L
    Mingione, G
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (01): : 107 - 125
  • [6] Frehse J., 1999, TRANSL AM MATH SOC 2, V193, P127
  • [7] Fuchs M, 1999, MATH METHOD APPL SCI, V22, P317, DOI 10.1002/(SICI)1099-1476(19990310)22:4<317::AID-MMA43>3.0.CO
  • [8] 2-A
  • [9] Fuchs M, 1998, CALC VAR PARTIAL DIF, V6, P171, DOI 10.1007/s005260050088
  • [10] Full C1,α-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth
    Fuchs, M
    Mingione, G
    [J]. MANUSCRIPTA MATHEMATICA, 2000, 102 (02) : 227 - 250