Forward modeling magnetic fields of induced and remanent magnetization in the lithosphere using tesseroids

被引:25
作者
Baykiev, Eldar [1 ]
Ebbing, Joerg [1 ,2 ]
Bronner, Marco [1 ,3 ]
Fabian, Karl [3 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Petr Engn & Appl Geophys, Trondheim, Norway
[2] Univ Kiel, Dept Geosci, Kiel, Germany
[3] Geol Survey Norway, Trondheim, Norway
关键词
Tesseroid; Satellite magnetics; Swarm; Magnetic anomalies; Modeling and interpretation; LEGENDRE QUADRATURE INTEGRATION; PRISM; GRADIOMETRY; BOUNDARY; MISSION; MAGSAT; MOHO;
D O I
10.1016/j.cageo.2016.08.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A newly developed software package to calculate the magnetic field in a spherical coordinate system near the Earth's surface and on satellite height is shown to produce reliable modeling results for global and regional applications. The discretization cells of the model are uniformly magnetized spherical prisms, so called tesseroids. The presented algorithm extends an existing code for gravity calculations by applying Poisson's relation to identify the magnetic potential with the sum over pseudogravity fields of tesseroids. By testing different lithosphere discretization grids it is possible to determine the optimal size of tesseroids for field calculations on satellite altitude within realistic measurement error bounds. Also the influence of the Earth's ellipticity upon the modeling result is estimated and global examples are studied. The new software calculates induced and remanent magnetic fields for models at global and regional scale. For regional models far-field effects are evaluated and discussed. This provides bounds for the minimal size of a regional model that is necessary to predict meaningful satellite total field anomalies over the corresponding area. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:124 / 135
页数:12
相关论文
共 34 条
[1]  
[Anonymous], 1995, POTENTIAL THEORY GRA, DOI [DOI 10.1017/CBO9780511549816, 10.1017/CBO9780511549816]
[2]   Spherical prism magnetic effects by Gauss-Legendre quadrature integration [J].
Asgharzadeh, M. F. ;
von Frese, R. R. B. ;
Kim, H. R. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 173 (01) :315-333
[3]   Spherical prism gravity effects by Gauss-Legendre quadrature integration [J].
Asgharzadeh, M. F. ;
von Frese, R. R. B. ;
Kim, H. R. ;
Leftwich, T. E. ;
Kim, J. W. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 169 (01) :1-11
[4]  
BACKUS G, 2005, FDN GEOMAGNETISM
[5]   Magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system [J].
Du, Jinsong ;
Chen, Chao ;
Lesur, Vincent ;
Lane, Richard ;
Wang, Huilin .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 201 (03) :1977-2007
[6]   Contribution of lithospheric remanent magnetization to satellite magnetic anomalies over the world's oceans [J].
Dyment, J ;
Arkani-Hamed, J .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1998, 103 (B7) :15423-15441
[7]   Eight good reasons why the uppermost mantle could be magnetic [J].
Ferre, Eric C. ;
Friedman, Sarah A. ;
Martin-Hernandez, Fatima ;
Feinberg, Joshua M. ;
Till, Jessica L. ;
Ionov, Dmitri A. ;
Conder, James A. .
TECTONOPHYSICS, 2014, 624 :3-14
[8]   International Geomagnetic Reference Field: the eleventh generation [J].
Finlay, C. C. ;
Maus, S. ;
Beggan, C. D. ;
Bondar, T. N. ;
Chambodut, A. ;
Chernova, T. A. ;
Chulliat, A. ;
Golovkov, V. P. ;
Hamilton, B. ;
Hamoudi, M. ;
Holme, R. ;
Hulot, G. ;
Kuang, W. ;
Langlais, B. ;
Lesur, V. ;
Lowes, F. J. ;
Luehr, H. ;
Macmillan, S. ;
Mandea, M. ;
McLean, S. ;
Manoj, C. ;
Menvielle, M. ;
Michaelis, I. ;
Olsen, N. ;
Rauberg, J. ;
Rother, M. ;
Sabaka, T. J. ;
Tangborn, A. ;
Toffner-Clausen, L. ;
Thebault, E. ;
Thomson, A. W. P. ;
Wardinski, I. ;
Wei, Z. ;
Zvereva, T. I. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 183 (03) :1216-1230
[9]   On the geologic time scale 2008 [J].
Gradstein, Felix M. ;
Ogg, James G. ;
van Kranendonk, Martin .
NEWSLETTERS ON STRATIGRAPHY, 2008, 43 (01) :5-13
[10]   Optimized formulas for the gravitational field of a tesseroid [J].
Grombein, Thomas ;
Seitz, Kurt ;
Heck, Bernhard .
JOURNAL OF GEODESY, 2013, 87 (07) :645-660