Observation of Kuznetsov-Ma soliton dynamics in optical fibre

被引:393
作者
Kibler, B. [2 ]
Fatome, J. [2 ]
Finot, C. [2 ]
Millot, G. [2 ]
Genty, G. [3 ]
Wetzel, B. [1 ]
Akhmediev, N. [4 ]
Dias, F. [5 ]
Dudley, J. M. [1 ]
机构
[1] Univ Franche Comte, Inst FEMTO ST, UMR CNRS 6174, F-25030 Besancon, France
[2] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne, UMR CNRS 6303, Dijon, France
[3] Tampere Univ Technol, Opt Lab, FI-33101 Tampere, Finland
[4] Australian Natl Univ, Opt Sci Grp, Res Sch Phys & Engn, Inst Adv Studies, Canberra, ACT 0200, Australia
[5] Natl Univ Ireland Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
基金
欧洲研究理事会; 芬兰科学院; 澳大利亚研究理事会;
关键词
PEREGRINE SOLITON; MODULATION INSTABILITY; WATER-WAVES; EVOLUTION; EQUATIONS;
D O I
10.1038/srep00463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The nonlinear Schrodinger equation (NLSE) is a central model of nonlinear science, applying to hydrodynamics, plasma physics, molecular biology and optics. The NLSE admits only few elementary analytic solutions, but one in particular describing a localized soliton on a finite background is of intense current interest in the context of understanding the physics of extreme waves. However, although the first solution of this type was the Kuznetzov-Ma (KM) soliton derived in 1977, there have in fact been no quantitative experiments confirming its validity. We report here novel experiments in optical fibre that confirm the KM soliton theory, completing an important series of experiments that have now observed a complete family of soliton on background solutions to the NLSE. Our results also show that KM dynamics appear more universally than for the specific conditions originally considered, and can be interpreted as an analytic description of Fermi-Pasta-Ulam recurrence in NLSE propagation.
引用
收藏
页数:5
相关论文
共 31 条
[1]  
Agrawal G. P., 2007, Nonlinear Fiber Optics, V4
[2]  
Akhmediev N., 1997, Solitons: Nonlinear Pulses and Beams
[3]   EXACT 1ST-ORDER SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
ELEONSKII, VM ;
KULAGIN, NE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (02) :809-818
[4]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[5]   Nonlinear optical fiber based high resolution all-optical waveform sampling [J].
Andrekson, Peter A. ;
Westlund, Mathias .
LASER & PHOTONICS REVIEWS, 2007, 1 (03) :231-248
[6]  
Clauss G. F., 2011, P ASME 2011 30 INT C
[7]  
Dauxois T., 2006, Physics of Solitons
[8]  
Dias F., 2011, LECT NOTES SERIES I, V21, P295
[9]   Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation [J].
Dudley, J. M. ;
Genty, G. ;
Dias, F. ;
Kibler, B. ;
Akhmediev, N. .
OPTICS EXPRESS, 2009, 17 (24) :21497-21508
[10]   Complete characterization of ultrashort pulse sources at 1550 nm [J].
Dudley, JM ;
Barry, LP ;
Harvey, JD ;
Thomson, MD ;
Thomsen, BC ;
Bollond, PG ;
Leonhardt, R .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1999, 35 (04) :441-450