Solution of the Fokker-Planck Equation with a Logarithmic Potential

被引:49
|
作者
Dechant, A. [2 ]
Lutz, E. [2 ]
Barkai, E. [1 ]
Kessler, D. A. [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Univ Augsburg, Dept Phys, D-86135 Augsburg, Germany
基金
以色列科学基金会;
关键词
Anomalous diffusion; Fokker-Planck equation; Logarithmic potential; Ergodicity breaking; ANOMALOUS DIFFUSION; RANDOM-WALKS; DYNAMICS;
D O I
10.1007/s10955-011-0363-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the diffusion of particles in an attractive one-dimensional potential that grows logarithmically for large |x| using the Fokker-Planck equation. An eigenfunction expansion shows that the Boltzmann equilibrium density does not fully describe the long-time limit of this problem. Instead this limit is characterized by an infinite covariant density. This non-normalizable density yields the mean square displacement of the particles, which for a certain range of parameters exhibits anomalous diffusion. In a symmetric potential with an asymmetric initial condition, the average position decays anomalously slowly. This problem also has applications outside the thermal context, as in the diffusion of the momenta of atoms in optical molasses.
引用
收藏
页码:1524 / 1545
页数:22
相关论文
共 50 条
  • [1] Solution of the Fokker-Planck Equation with a Logarithmic Potential
    A. Dechant
    E. Lutz
    E. Barkai
    D. A. Kessler
    Journal of Statistical Physics, 2011, 145 : 1524 - 1545
  • [2] Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum
    Guarnieri, F.
    Moon, W.
    Wettlaufer, J. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)
  • [3] A SOLUTION OF A FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    PHYSICA A, 1990, 167 (03): : 877 - 886
  • [5] A TRANSIENT SOLUTION OF THE FOKKER-PLANCK EQUATION
    EATON, CF
    AIAA JOURNAL, 1964, 2 (11) : 2033 - 2034
  • [6] SEQUENCE SOLUTION TO FOKKER-PLANCK EQUATION
    MAYFIELD, WW
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (02) : 165 - 176
  • [7] NUMERICAL SOLUTION OF FOKKER-PLANCK EQUATION
    KULSRUD, RM
    SUN, YC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (10): : 1262 - 1262
  • [8] Approximate solution for Fokker-Planck equation
    Araujo, M. T.
    Drigo Filho, E.
    CONDENSED MATTER PHYSICS, 2015, 18 (04)
  • [9] A General Solution of the Fokker-Planck Equation
    Araujo, M. T.
    Drigo Filho, E.
    JOURNAL OF STATISTICAL PHYSICS, 2012, 146 (03) : 610 - 619
  • [10] A General Solution of the Fokker-Planck Equation
    M. T. Araujo
    E. Drigo Filho
    Journal of Statistical Physics, 2012, 146 : 610 - 619