Modal classification in optical waveguides using deep learning

被引:22
作者
Alagappan, Gandhi [1 ]
Png, Ching Eng [1 ]
机构
[1] ASTAR, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
关键词
Nanophotonics; Deep Learning; Waveguide; Mode Classifications; SILICON; GENERATION; NETWORKS; COMPACT;
D O I
10.1080/09500340.2018.1552331
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Single-mode operation is crucial in many on-chip integrated photonic devices, and thus the identification of single-mode geometries is an inevitable design requirement. In this article, we develop deep learning (DL) models for ultra-quick classifications of optical waveguide geometries into single- and multi-modal geometries. The DL model accurately predicts the boundary in the parameter space for the geometry of the waveguide that splits the space into single- and multi-modal regions. Using silicon nitride channel waveguide, and targeting both visible and telecommunication wavelengths, we illustrate how DL models can be developed with a minimal number of exact numerical simulations to Maxwell's equations.
引用
收藏
页码:557 / 561
页数:5
相关论文
共 29 条
[11]   TRAINING FEEDFORWARD NETWORKS WITH THE MARQUARDT ALGORITHM [J].
HAGAN, MT ;
MENHAJ, MB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (06) :989-993
[12]  
Heaton J., 2008, Introduction to Neural Networks with Java, V2nd
[13]   Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip [J].
Hu, Qing ;
Xu, Di-Hu ;
Zhou, Yu ;
Peng, Ru-Wen ;
Fan, Ren-Hao ;
Fang, Nicholas X. ;
Wang, Qian-Jin ;
Huang, Xian-Rong ;
Wang, Mu .
SCIENTIFIC REPORTS, 2013, 3
[14]   "Rainbow" trapped in a self-similar coaxial optical waveguide [J].
Hu, Qing ;
Zhao, Jin-Zhu ;
Peng, Ru-Wen ;
Gao, Feng ;
Zhang, Rui-Li ;
Wang, Mu .
APPLIED PHYSICS LETTERS, 2010, 96 (16)
[15]  
Kojima K., 2017, ADV PHOTONICS 2017 I
[16]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[17]   Harmonic generation in silicon nitride ring resonators [J].
Levy, Jacob S. ;
Foster, Mark A. ;
Gaeta, Alexander L. ;
Lipson, Michal .
OPTICS EXPRESS, 2011, 19 (12) :11415-11421
[18]   Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures [J].
Liu, Dianjing ;
Tan, Yixuan ;
Khoram, Erfan ;
Yu, Zongfu .
ACS PHOTONICS, 2018, 5 (04) :1365-1369
[19]   Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials [J].
Ma, Wei ;
Cheng, Feng ;
Liu, Yongmin .
ACS NANO, 2018, 12 (06) :6326-6334
[20]  
Malkiel I., 2017, ARXIV170207949