A Highly Conserved Effector in Fusarium oxysporum Is Required for Full Virulence on Arabidopsis

被引:142
作者
Thatcher, Louise F. [1 ]
Gardiner, Donald M. [1 ]
Kazan, Kemal [1 ]
Manners, John M. [1 ]
机构
[1] CSIRO Plant Ind, Queensland Biosci Precinct, St Lucia, Qld 4067, Australia
关键词
DISEASE-RESISTANCE; ARMS-RACE; I-3-MEDIATED RESISTANCE; SIGNALING PATHWAYS; TRANSPORTER GENE; INFECTED TOMATO; XYLEM SAP; EXPRESSION; REVEALS; DEFENSE;
D O I
10.1094/MPMI-08-11-0212
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Secreted-in-xylem (SIX) proteins of the vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici are secreted during infection of tomato and function in virulence or avirulence. E oxysporum formae speciales have specific host ranges but the roles of SIX proteins in diverse hosts are unknown. We identified homologs of E oxysporum f. sp. lycopersici SIX1, SIX4, SIX8, and SIX9 in the genome of Arabidopsis infecting isolate Fo5176. A SIX4 homolog (termed Fo5176-SIX4) differed from that of F. oxysporum f. sp. lycopersici (Fol-SIX4) by only two amino acids, and its expression was induced during infection of Arabidopsis. Transgenic Arabidopsis plants constitutively expressing Fo5176-SIX4 had increased disease symptoms with Fo5176. Conversely, Fo5176-SIX4 gene knock-out mutants (Delta six4) had significantly reduced virulence on Arabidopsis, and this was associated with reduced fungal biomass and host jasmonate-mediated gene expression, the latter known to be essential for host symptom development. Full virulence was restored by complementation of Delta six4 mutants with either Fo5176-SIX4 or Fol-SIX4. Thus, Fo5176-SIX4 contributes quantitatively to virulence on Arabidopsis whereas, in tomato, Fol-SIX4 acts in host specificity as both an avirulence protein and a suppressor of other race-specific resistances. The strong sequence conservation for SIX4 in E oxysporum f. sp. lycopersici and Fo5176 suggests a recent common origin.
引用
收藏
页码:180 / 190
页数:11
相关论文
共 41 条
[1]   Protein database searches using compositionally adjusted substitution matrices [J].
Altschul, SF ;
Wootton, JC ;
Gertz, EM ;
Agarwala, R ;
Morgulis, A ;
Schäffer, AA ;
Yu, YK .
FEBS JOURNAL, 2005, 272 (20) :5101-5109
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Plants versus pathogens: an evolutionary arms race [J].
Anderson, Jonathan P. ;
Gleason, Cynthia A. ;
Foley, Rhonda C. ;
Thrall, Peter H. ;
Burdon, Jeremy B. ;
Singh, Karam B. .
FUNCTIONAL PLANT BIOLOGY, 2010, 37 (06) :499-512
[4]   Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis [J].
Anderson, JP ;
Badruzsaufari, E ;
Schenk, PM ;
Manners, JM ;
Desmond, OJ ;
Ehlert, C ;
Maclean, DJ ;
Ebert, PR ;
Kazan, K .
PLANT CELL, 2004, 16 (12) :3460-3479
[5]   Elicitors, effectors, and R genes:: The new paradigm and a lifetime supply of questions [J].
Bent, Andrew F. ;
Mackey, David .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2007, 45 :399-436
[6]  
Berrocal-Lobo M, 2004, MOL PLANT MICROBE IN, V17, P763, DOI 10.1094/MPMI.2004.17.7.763
[7]   Innate Immunity in Plants: An Arms Race Between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens [J].
Boller, Thomas ;
He, Sheng Yang .
SCIENCE, 2009, 324 (5928) :742-744
[8]   Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis [J].
Campbell, EJ ;
Schenk, PM ;
Kazan, K ;
Penninckx, IAMA ;
Anderson, JP ;
Maclean, DJ ;
Cammue, BPA ;
Ebert, PR ;
Manners, JM .
PLANT PHYSIOLOGY, 2003, 133 (03) :1272-1284
[9]   Variation in potential effector genes distinguishing Australian and non-Australian isolates of the cotton wilt pathogen Fusarium oxysporum f.sp vasinfectum [J].
Chakrabarti, A. ;
Rep, M. ;
Wang, B. ;
Ashton, A. ;
Dodds, P. ;
Ellis, J. .
PLANT PATHOLOGY, 2011, 60 (02) :232-243
[10]   Host-microbe interactions: Shaping the evolution of the plant immune response [J].
Chisholm, ST ;
Coaker, G ;
Day, B ;
Staskawicz, BJ .
CELL, 2006, 124 (04) :803-814