Controlled-Phase Gate Using Dynamically Coupled Cavities and Optical Nonlinearities

被引:62
作者
Heuck, Mikkel [1 ,2 ]
Jacobs, Kurt [3 ,4 ,5 ]
Englund, Dirk R. [2 ]
机构
[1] Tech Univ Denmark, DTU Foton, Bldg 343, DK-2800 Lyngby, Denmark
[2] MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] US Army, Res Lab, Computat & Informat Sci Directorate, Adelphi, MD 20783 USA
[4] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA
[5] Louisiana State Univ, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
关键词
QUANTUM FREQUENCY-CONVERSION; EFFICIENT;
D O I
10.1103/PhysRevLett.124.160501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that relatively simple integrated photonic circuits have the potential to realize a high fidelity deterministic controlled-phase gate between photonic qubits using bulk optical nonlinearities. The gate is enabled by converting travelling continuous-mode photons into stationary cavity modes using strong classical control fields that dynamically change the effective cavity-waveguide coupling rate. This architecture succeeds because it reduces the wave packet distortions that otherwise accompany the action of optical nonlinearities [J. Shapiro, Phys. Rev. A 73, 062305 (2006); J. Gea-Banacloche, Phys. Rev. A 81, 043823 (2010)]. We show that high-fidelity gates can be achieved with self-phase modulation in chi((3)) materials as well as second-harmonic generation in chi((2)) materials. The gate fidelity asymptotically approaches unity with increasing storage time for an incident photon wave packet with fixed duration. We also show that dynamically coupled cavities enable a trade-off between errors due to loss and wave packet distortion. Our proposed architecture represents a new approach to practical implementation of quantum gates that is room-temperature compatible and only relies on components that have been individually demonstrated.
引用
收藏
页数:6
相关论文
共 48 条
[31]  
Panuski C., 2020, B AM PHYS SOC
[32]   Photon Sorting, Efficient Bell Measurements, and a Deterministic Controlled-Z Gate Using a Passive Two-Level Nonlinearity [J].
Ralph, T. C. ;
Sollner, I. ;
Mahmoodian, S. ;
White, A. G. ;
Lodahl, P. .
PHYSICAL REVIEW LETTERS, 2015, 114 (17)
[33]   Photonic temporal-mode multiplexing by quantum frequency conversion in a dichroic-finesse cavity [J].
Reddy, Dileep, V ;
Raymer, Michael G. .
OPTICS EXPRESS, 2018, 26 (21) :28091-28103
[34]   Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion [J].
Rivoire, Kelley ;
Buckley, Sonia ;
Vuckovic, Jelena .
OPTICS EXPRESS, 2011, 19 (22) :22198-22207
[35]   Optical time lens based on four-wave mixing on a silicon chip [J].
Salem, Reza ;
Foster, Mark A. ;
Turner, Amy C. ;
Geraghty, David F. ;
Lipson, Michal ;
Gaeta, Alexander L. .
OPTICS LETTERS, 2008, 33 (10) :1047-1049
[36]   Thermalizing quantum machines: Dissipation and entanglement [J].
Scarani, V ;
Ziman, M ;
Stelmachovic, P ;
Gisin, N ;
Buzek, V .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :979051-979054
[37]   Single-photon Kerr nonlinearities do not help quantum computation [J].
Shapiro, Jeffrey H. .
PHYSICAL REVIEW A, 2006, 73 (06)
[38]   Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation [J].
Skauli, T ;
Vodopyanov, KL ;
Pinguet, TJ ;
Schober, A ;
Levi, O ;
Eyres, LA ;
Fejer, MM ;
Harris, JS ;
Gerard, B ;
Becouarn, L ;
Lallier, E ;
Arisholm, G .
OPTICS LETTERS, 2002, 27 (08) :628-630
[39]   Dynamic control of the Q factor in a photonic crystal nanocavity [J].
Tanaka, Yoshinori ;
Upham, Jeremy ;
Nagashima, Takushi ;
Sugiya, Tomoaki ;
Asano, Takashi ;
Noda, Susumu .
NATURE MATERIALS, 2007, 6 (11) :862-865
[40]   Strongly driven nonlinear quantum optics in microring resonators [J].
Vernon, Z. ;
Sipe, J. E. .
PHYSICAL REVIEW A, 2015, 92 (03)