The AS-Cohen-Macaulay property for quantum flag manifolds of minuscule weight

被引:7
作者
Kolb, Stefan [1 ,2 ]
机构
[1] Univ Edinburgh, JCMB, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, JCMB, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
quantum flag manifolds; straightening laws; Cohen-Macaulay; Gorenstein;
D O I
10.1016/j.jalgebra.2007.10.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that quantum homogeneous coordinate rings of generalised flag manifolds corresponding to minuscule weights, their Schubert varieties, big cells, and determinantal varieties are AS-Cohen-Macaulay. The main ingredient in the proof is the notion of a quantum graded algebra with a straightening law, introduced by T.H. Lenagan and L. Rigal [T.H. Lenagan, L. Rigal, Quantum graded algebras with a straightening law and the AS-Cohen-Macaulay property for quantum determinantal rings and quantum Grassmannians, J. Algebra 301 (2006) 670-702]. Using Stanley's Theorem it is moreover shown that quantum generalised flag manifolds of minuscule weight and their big cells are AS-Gorenstein. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:3518 / 3534
页数:17
相关论文
共 28 条