The construction of rod-like polypyrrole network on hard magnetic porous textile anodes for microbial fuel cells with ultra-high output power density

被引:17
作者
Li, Fei [1 ,2 ,4 ]
Wang, Dong [2 ,3 ]
Liu, Qiongzhen [1 ,2 ]
Wang, Bo [1 ]
Zhong, Weibing [2 ,3 ]
Li, Mufang [1 ,2 ]
Liu, Ke [1 ,2 ]
Lu, Zhentan [1 ,2 ]
Jiang, Haiqing [1 ,2 ]
Zhao, Qinghua [1 ,2 ]
Xiong, Chuanxi [4 ]
机构
[1] Wuhan Text Univ, Coll Mat Sci & Engn, Wuhan 430200, Hubei, Peoples R China
[2] Hubei Key Lab Adv Text Mat & Applicat, Wuhan 430200, Hubei, Peoples R China
[3] Donghua Univ, Coll Chem Chem Engn & Biotechnol, Shanghai 201620, Peoples R China
[4] Wuhan Univ Technol, Coll Mat Sci & Engn, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Microbial fuel cell; Flexible and magnetic anode; 3D rod-like polypyrrole network; Charge transfer resistances; Electric power density; ELECTRICITY PRODUCTION; CARBON; FIELD; PERFORMANCE; FABRICATION; GENERATION;
D O I
10.1016/j.jpowsour.2018.11.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study attempts to prompt the formation of microorganism films on flexible textile-based anodes and enhances the performance of living microorganisms by introducing magnetic properties to the anodes. A magnetic and electrically conductive anode for a microbial fuel cell is designed and fabricated by encapsulating uniformly dispersed SrFe12O19 nanoparticles into the poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers and forming a three-dimensional (3D) polypyrrole (PPy) network on the surface of flexible composite nanofiber based fabric. A dual-chamber MFC equipped with the magnetized anode shows a maximum power density of 3317 mW m(-2), which is significantly larger than that of the non-magnetized anode (2471 mW m(-2)). This study demonstrates that the hard-magnetic anode providing an inherent magnetic field can greatly promote bio-electrochemical reaction rates of E. colt and decrease the anode charge transfer resistance in a MFC system.
引用
收藏
页码:514 / 519
页数:6
相关论文
共 29 条
[1]   Immobilized enzymes bioreactors utilizing a magnetic field: A review [J].
Al-Qodah, Zakaria ;
Al-Shannag, Mohammad ;
Ai-Busoul, M. ;
Penchev, I. ;
Orfali, Wasim .
BIOCHEMICAL ENGINEERING JOURNAL, 2017, 121 :94-106
[2]   Composite materials for polymer electrolyte membrane microbial fuel cells [J].
Antolini, Ermete .
BIOSENSORS & BIOELECTRONICS, 2015, 69 :54-70
[3]   Which determines power generation of microbial fuel cell based on carbon anode, surface morphology or oxygen-containing group? [J].
Cui, D. ;
Wang, Y. Q. ;
Xing, L. D. ;
Li, W. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (27) :15081-15087
[4]  
DR L., 2008, CURR OPIN BIOTECH, V19, P564
[5]   Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater [J].
Ge, Zheng ;
Wu, Liao ;
Zhang, Fei ;
He, Zhen .
JOURNAL OF POWER SOURCES, 2015, 297 :260-264
[6]   Advances in microbial fuel cells for wastewater treatment [J].
He, Li ;
Du, Peng ;
Chen, Yizhong ;
Lu, Hongwei ;
Cheng, Xi ;
Chang, Bei ;
Wang, Zheng .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 71 :388-403
[7]   Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: Enhanced performance of biofuel cells [J].
Katz, E ;
Lioubashevski, O ;
Willner, I .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (11) :3979-3988
[8]   Power production enhancement with a polyaniline modified anode in microbial fuel cells [J].
Lai, Bin ;
Tang, Xinghua ;
Li, Haoran ;
Du, Zhuwei ;
Liu, Xinwei ;
Zhang, Qian .
BIOSENSORS & BIOELECTRONICS, 2011, 28 (01) :373-377
[9]   Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells [J].
Li, Wen-Wei ;
Sheng, Guo-Ping ;
Liu, Xian-Wei ;
Cai, Pei-Jie ;
Sun, Min ;
Xiao, Xiang ;
Wang, Yun-Kun ;
Tong, Zhong-Hua ;
Dong, Fang ;
Yu, Han-Qing .
BIOSENSORS & BIOELECTRONICS, 2011, 26 (10) :3987-3992
[10]  
Liu Q., 2017, COMPOSITES A, V101