On projectively related randers metrics

被引:11
|
作者
Shen, Yibing [1 ]
Yu, Yaoyong [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Randers metric; projectively related; Douglas tensor; projectively flat;
D O I
10.1142/S0129167X08004789
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that two Randers metrics are pointwise projectively related if and only if they have the same Douglas tensors and the corresponding Riemannian metrics are projectively related. Moreover, Randers metrics of constant flag curvature and Einstein-Randers metrics are considered.
引用
收藏
页码:503 / 520
页数:18
相关论文
共 50 条
  • [31] Some constructions of projectively flat Finsler metrics
    Xiaohuan Mo
    Zhongmin Shen
    Chunhong Yang
    Science in China Series A, 2006, 49 : 703 - 714
  • [32] On a class of locally projectively flat Finsler metrics
    Li, Benling
    Shen, Zhongmin
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (06)
  • [33] Some constructions of projectively flat Finsler metrics
    Mo Kwhuan
    Shen Zhongmin
    Yang Chunhong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (05): : 703 - 714
  • [34] A CLASS OF RANDERS METRICS OF SCALAR FLAG CURVATURE
    Shen, Zhongmin
    Xia, Qiaoling
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (07)
  • [35] Randers metrics based on deformations by gradient winds
    Aldea, Nicoleta
    Kopacz, Piotr
    Wolak, Robert
    PERIODICA MATHEMATICA HUNGARICA, 2023, 86 (01) : 266 - 280
  • [36] On Generalized Douglas-Weyl Randers Metrics
    Tayebeh Tabatabaeifar
    Behzad Najafi
    Mehdi Rafie-Rad
    Czechoslovak Mathematical Journal, 2021, 71 : 155 - 172
  • [37] On a New Class of Projectively Flat Finsler Metrics
    Li, Ying
    Song, Wei-Dong
    JOURNAL OF MATHEMATICAL STUDY, 2016, 49 (01): : 57 - 63
  • [38] Projectively flat Finsler metrics with orthogonal invariance
    Huang, Libing
    Mo, Xiaohuan
    ANNALES POLONICI MATHEMATICI, 2013, 107 (03) : 259 - 270
  • [39] A class of Randers metrics of scalar flag curvature
    Cheng, Xinyue
    Yin, Li
    Li, Tingting
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (13)
  • [40] The holonomy group of locally projectively flat Randers two-manifolds of constant curvature
    Hubicska, Balazs
    Muzsnay, Zoltan
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 73