Modified sliding mode synchronization of typical three-dimensional fractional-order chaotic systems

被引:29
作者
Gao, Like [1 ]
Wang, Zhihui [2 ]
Zhou, Ke [1 ]
Zhu, Wenji [1 ]
Wu, Zhiding [1 ]
Ma, Tiedong [2 ,3 ]
机构
[1] Guangxi Power Grid Corp, Elect Power Res Inst, Nanning 530023, Peoples R China
[2] Chongqing Univ, Coll Automat, Chongqing 400044, Peoples R China
[3] Chongqing Univ, Minist Educ, Key Lab Dependable Serv Comp, Cyber Phys Soc, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaos synchronization; Fractional-order chaotic system; Fractional-order derivative; Sliding mode control (SMC); NEURAL-NETWORKS; ADAPTIVE SYNCHRONIZATION; EXPONENTIAL SYNCHRONIZATION; LAG SYNCHRONIZATION; DELAY; STABILITY;
D O I
10.1016/j.neucom.2015.04.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a modified sliding mode control scheme is proposed to realize complete synchronization of a class of three-dimensional fractional-order chaotic systems. By constructing the suitable sliding mode surface with fractional-order derivative, a single-state sliding mode controller is designed to realize the asymptotical stability of synchronization error system. Compared with the existing results, the main results in this paper are more reasonable and rigorous. Simulation results show the effectiveness and feasibility of the proposed sliding mode control method. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 48 条
[1]   Comments on "Adaptive synchronization of fractional-order chaotic systems via a single driving variable" [Nonlinear Dyn. (2011), doi:10.1007/s11071-011-9944-2] [J].
Aghababa, Mohammad Pourmahmood .
NONLINEAR DYNAMICS, 2011, 66 (04) :839-842
[2]   A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters [J].
Agrawal, S. K. ;
Das, S. .
NONLINEAR DYNAMICS, 2013, 73 (1-2) :907-919
[3]   Synchronization of fractional order chaotic systems using active control method [J].
Agrawal, S. K. ;
Srivastava, M. ;
Das, S. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (06) :737-752
[4]   Synchronization of different fractional order chaotic systems using active control [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3536-3546
[5]   Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control [J].
Chen, Diyi ;
Zhang, Runfan ;
Sprott, Julien Clinton ;
Ma, Xiaoyi .
NONLINEAR DYNAMICS, 2012, 70 (02) :1549-1561
[6]   Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control [J].
Chen, Diyi ;
Zhang, Runfan ;
Sprott, J. C. ;
Chen, Haitao ;
Ma, Xiaoyi .
CHAOS, 2012, 22 (02)
[7]   Modified impulsive synchronization of fractional order hyperchaotic systems [J].
Fu Jie ;
Yu Miao ;
Ma Tie-Dong .
CHINESE PHYSICS B, 2011, 20 (12)
[8]  
Hilfer R., 2001, APPL FRACTIONAL CALC
[9]   Sliding mode synchronization of an uncertain fractional order chaotic system [J].
Hosseinnia, S. H. ;
Ghaderi, R. ;
Ranjbar, A. N. ;
Mahmoudian, M. ;
Momani, S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1637-1643
[10]   Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability [J].
Li, Yan ;
Chen, YangQuan ;
Podlubny, Igor .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1810-1821