Lie and Courant algebroids on foliated manifolds

被引:2
作者
Vaisman, Izu [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31999 Haifa, Israel
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2011年 / 42卷 / 04期
关键词
Foliation; Lie Algebroid; Courant Algebroid; REDUCTION;
D O I
10.1007/s00574-011-0036-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is an exposition of the subject, which was developed in the author's papers [19, 20]. Various results from the theory of foliations (cohomology, characteristic classes, deformations, etc.) are extended to subalgebroids of Lie algebroids that generalize the tangent integrable distributions. We also suggest a definition of foliated Courant algebroids and give some corresponding results and constructions.
引用
收藏
页码:805 / 830
页数:26
相关论文
共 21 条
[11]   Integration of holomorphic Lie algebroids [J].
Laurent-Gengoux, Camille ;
Stienon, Mathieu ;
Xu, Ping .
MATHEMATISCHE ANNALEN, 2009, 345 (04) :895-923
[12]   Holomorphic Poisson Manifolds and Holomorphic Lie Algebroids [J].
Laurent-Gengoux, Camille ;
Stienon, Mathieu ;
Xu, Ping .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[13]   Manin triples for lie bialgebroids [J].
Liu, ZJ ;
Weinstein, A ;
Xu, P .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (03) :547-574
[14]  
Mackenzie K., 2005, LECT NOTES LONDON MA, V213
[15]   On the integrability of Lie subalgebroids [J].
Moerdijk, I ;
Mrcun, J .
ADVANCES IN MATHEMATICS, 2006, 204 (01) :101-115
[16]  
MOLINO P, 1988, PROGR MATH SERIES, V73
[17]  
VAISMAN I, 1987, PROGR MATH SERIES, V72
[18]   Foliated Lie and Courant Algebroids [J].
Vaisman, Izu .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (04) :415-444
[19]  
Vaisman I, 2010, B MATH SOC SCI MATH, V53, P177
[20]   Geometric quantization of weak-Hamiltonian functions [J].
Vaisman, Izu .
JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (01) :35-49