Lie and Courant algebroids on foliated manifolds

被引:2
作者
Vaisman, Izu [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31999 Haifa, Israel
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2011年 / 42卷 / 04期
关键词
Foliation; Lie Algebroid; Courant Algebroid; REDUCTION;
D O I
10.1007/s00574-011-0036-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is an exposition of the subject, which was developed in the author's papers [19, 20]. Various results from the theory of foliations (cohomology, characteristic classes, deformations, etc.) are extended to subalgebroids of Lie algebroids that generalize the tangent integrable distributions. We also suggest a definition of foliated Courant algebroids and give some corresponding results and constructions.
引用
收藏
页码:805 / 830
页数:26
相关论文
共 21 条
  • [11] Integration of holomorphic Lie algebroids
    Laurent-Gengoux, Camille
    Stienon, Mathieu
    Xu, Ping
    [J]. MATHEMATISCHE ANNALEN, 2009, 345 (04) : 895 - 923
  • [12] Holomorphic Poisson Manifolds and Holomorphic Lie Algebroids
    Laurent-Gengoux, Camille
    Stienon, Mathieu
    Xu, Ping
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [13] Manin triples for lie bialgebroids
    Liu, ZJ
    Weinstein, A
    Xu, P
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (03) : 547 - 574
  • [14] Mackenzie K., 2005, LECT NOTES LONDON MA, V213
  • [15] On the integrability of Lie subalgebroids
    Moerdijk, I
    Mrcun, J
    [J]. ADVANCES IN MATHEMATICS, 2006, 204 (01) : 101 - 115
  • [16] MOLINO P, 1988, PROGR MATH SERIES, V73
  • [17] VAISMAN I, 1987, PROGR MATH SERIES, V72
  • [18] Foliated Lie and Courant Algebroids
    Vaisman, Izu
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (04) : 415 - 444
  • [19] Vaisman I, 2010, B MATH SOC SCI MATH, V53, P177
  • [20] Geometric quantization of weak-Hamiltonian functions
    Vaisman, Izu
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (01) : 35 - 49