A novel tonoplast Na+/H+ antiporter gene from date palm (PdNHX6) confers enhanced salt tolerance response in Arabidopsis

被引:33
|
作者
Al-Harrasi, Ibtisam [1 ]
Jana, Gerry Aplang [1 ]
Patankar, Himanshu, V [1 ]
Al-Yahyai, Rashid [2 ]
Rajappa, Sivamathini [3 ]
Kumar, Prakash P. [3 ]
Yaish, Mahmoud W. [1 ]
机构
[1] Sultan Qaboos Univ, Coll Sci, Dept Biol, POB 36, Muscat 123, Oman
[2] Sultan Qaboos Univ, Coll Agr & Marine Sci, Dept Crop Sci, POB 34, Muscat 123, Oman
[3] Natl Univ Singapore, Fac Sci, Dept Biol Sci, Singapore 117543, Singapore
关键词
NHXs; Date palm; Abiotic stress; Salinity; pH regulation; TRANSCRIPTION FACTOR; SALINITY TOLERANCE; STRESS; DROUGHT; OVEREXPRESSION; HALOPHYTES; TRANSPORT; VACUOLES; PH;
D O I
10.1007/s00299-020-02549-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Key message A sodium hydrogen exchanger (NHX) gene from the date palm enhances tolerance to salinity in Arabidopsis plants. Plant sodium hydrogen exchangers/antiporters (NHXs) are pivotal regulators of intracellular Na+/K+ and pH homeostasis, which is essential for salt stress adaptation. In this study, a novel orthologue of Na+/H+ antiporter was isolated from date palm (PdNHX6) and functionally characterized in mutant yeast cells and Arabidopsis plants to assess the behavior of the transgenic organisms in response to salinity. Genetically transformed yeast cells with PdNHX6 were sensitive to salt stress when compared to the empty vector (EV) yeast cells. Besides, the acidity value of the vacuoles of the transformant yeast cells has significantly (p <= 0.05) increased, as indicated by the calibrated fluorescence intensity measurements and the fluorescence imagining analyses. This observation supports the notion that PdNHX6 might regulate proton pumping into the vacuole, a crucial salt tolerance mechanism in the plants. Consistently, the transient overexpression and subcellular localization revealed the accumulation of PdNHX6 in the tonoplast surrounding the central vacuole of Nicotiana benthamiana leaf epidermal cells. Stable overexpression of PdNHX6 in Arabidopsis plants enhanced tolerance to salt stress and retained significantly higher chlorophyll, water contents, and increased seed germination under salinity when compared to the wild-type plants. Despite the significant increase of Na+, transgenic Arabidopsis lines maintained a balanced Na+/K+ ratio under salt stress conditions. Together, the results obtained from this study imply that PdNHX6 is involved in the salt tolerance mechanism in plants by controlling K+ and pH homeostasis of the vacuoles.
引用
收藏
页码:1079 / 1093
页数:15
相关论文
共 50 条
  • [21] Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana
    Wei, Q.
    Guo, Y. J.
    Cao, H. M.
    Kuai, B. K.
    PLANT CELL TISSUE AND ORGAN CULTURE, 2011, 105 (03) : 309 - 316
  • [22] GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana
    Chen, Xiugui
    Lu, Xuke
    Shu, Na
    Wang, Delong
    Wang, Shuai
    Wang, Junjuan
    Guo, Lixue
    Guo, Xiaoning
    Fan, Weili
    Lin, Zhongxu
    Ye, Wuwei
    PLOS ONE, 2017, 12 (07):
  • [23] GENE AMPLIFICATION AT A LOCUS ENCODING A PUTATIVE NA+/H+ ANTIPORTER CONFERS SODIUM AND LITHIUM TOLERANCE IN FISSION YEAST
    JIA, ZP
    MCCULLOUGH, N
    MARTEL, R
    HEMMINGSEN, S
    YOUNG, PG
    EMBO JOURNAL, 1992, 11 (04) : 1631 - 1640
  • [24] Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice
    Chen, Hui
    An, Rui
    Tang, Jiang-Hua
    Cui, Xiang-Huan
    Hao, Fu-Shun
    Chen, Jia
    Wang, Xue-Chen
    MOLECULAR BREEDING, 2007, 19 (03) : 215 - 225
  • [25] Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice
    Hui Chen
    Rui An
    Jiang-Hua Tang
    Xiang-Huan Cui
    Fu-Shun Hao
    Jia Chen
    Xue-Chen Wang
    Molecular Breeding, 2007, 19 : 215 - 225
  • [26] Cloning and characterization of Na+/H+ antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance
    Rauf, Muhammad
    Shahzad, Khurram
    Ali, Rashid
    Ahmad, Moddassir
    Habib, Imran
    Mansoor, Shahid
    Berkowitz, Gerald A.
    Saeed, Nasir A.
    MOLECULAR BIOLOGY REPORTS, 2014, 41 (03) : 1669 - 1682
  • [27] Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato
    Bhaskaran, Shimna
    Savithramma, D. L.
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (15) : 5561 - 5570
  • [28] Enhanced salt resistance in apple plants overexpressing a Malus vacuolar Na+/H+ antiporter gene is associated with differences in stomatal behavior and photosynthesis
    Li, Chao
    Wei, Zhiwei
    Liang, Dong
    Zhou, Shasha
    Li, Yonghong
    Liu, Changhai
    Ma, Fengwang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 70 : 164 - 173
  • [29] Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations
    Li TianXing
    Zhang Yue
    Liu Hua
    Wu YuTing
    Li WenBin
    Zhang HongXia
    CHINESE SCIENCE BULLETIN, 2010, 55 (12): : 1127 - 1134
  • [30] A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato
    Wang, Bing
    Zhai, Hong
    He, Shaozhen
    Zhang, Huan
    Ren, Zhitong
    Zhang, Dongdong
    Liu, Qingchang
    SCIENTIA HORTICULTURAE, 2016, 201 : 153 - 166