A novel tonoplast Na+/H+ antiporter gene from date palm (PdNHX6) confers enhanced salt tolerance response in Arabidopsis

被引:36
作者
Al-Harrasi, Ibtisam [1 ]
Jana, Gerry Aplang [1 ]
Patankar, Himanshu, V [1 ]
Al-Yahyai, Rashid [2 ]
Rajappa, Sivamathini [3 ]
Kumar, Prakash P. [3 ]
Yaish, Mahmoud W. [1 ]
机构
[1] Sultan Qaboos Univ, Coll Sci, Dept Biol, POB 36, Muscat 123, Oman
[2] Sultan Qaboos Univ, Coll Agr & Marine Sci, Dept Crop Sci, POB 34, Muscat 123, Oman
[3] Natl Univ Singapore, Fac Sci, Dept Biol Sci, Singapore 117543, Singapore
关键词
NHXs; Date palm; Abiotic stress; Salinity; pH regulation; TRANSCRIPTION FACTOR; SALINITY TOLERANCE; STRESS; DROUGHT; OVEREXPRESSION; HALOPHYTES; TRANSPORT; VACUOLES; PH;
D O I
10.1007/s00299-020-02549-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Key message A sodium hydrogen exchanger (NHX) gene from the date palm enhances tolerance to salinity in Arabidopsis plants. Plant sodium hydrogen exchangers/antiporters (NHXs) are pivotal regulators of intracellular Na+/K+ and pH homeostasis, which is essential for salt stress adaptation. In this study, a novel orthologue of Na+/H+ antiporter was isolated from date palm (PdNHX6) and functionally characterized in mutant yeast cells and Arabidopsis plants to assess the behavior of the transgenic organisms in response to salinity. Genetically transformed yeast cells with PdNHX6 were sensitive to salt stress when compared to the empty vector (EV) yeast cells. Besides, the acidity value of the vacuoles of the transformant yeast cells has significantly (p <= 0.05) increased, as indicated by the calibrated fluorescence intensity measurements and the fluorescence imagining analyses. This observation supports the notion that PdNHX6 might regulate proton pumping into the vacuole, a crucial salt tolerance mechanism in the plants. Consistently, the transient overexpression and subcellular localization revealed the accumulation of PdNHX6 in the tonoplast surrounding the central vacuole of Nicotiana benthamiana leaf epidermal cells. Stable overexpression of PdNHX6 in Arabidopsis plants enhanced tolerance to salt stress and retained significantly higher chlorophyll, water contents, and increased seed germination under salinity when compared to the wild-type plants. Despite the significant increase of Na+, transgenic Arabidopsis lines maintained a balanced Na+/K+ ratio under salt stress conditions. Together, the results obtained from this study imply that PdNHX6 is involved in the salt tolerance mechanism in plants by controlling K+ and pH homeostasis of the vacuoles.
引用
收藏
页码:1079 / 1093
页数:15
相关论文
共 60 条
[1]  
Al Harrasi I, 2017, METHODS MOL BIOL, V1631, P121, DOI 10.1007/978-1-4939-7136-7_7
[2]   Antioxidant Response to Salinity in Salt-Tolerant and Salt-Susceptible Cultivars of Date Palm [J].
Al Kharusi, Latifa ;
Al Yahyai, Rashid ;
Yaish, Mahmoud W. .
AGRICULTURE-BASEL, 2019, 9 (01)
[3]   Screening of Date Palm (Phoenix dactylifera L.) Cultivars for Salinity Tolerance [J].
Al Kharusi, Latifa ;
Assaha, Dekoum V. M. ;
Al-Yahyai, Rashid ;
Yaish, Mahmoud W. .
FORESTS, 2017, 8 (04)
[4]   Differential DNA methylation and transcription profiles in date palm roots exposed to salinity [J].
Al-Harrasi, Ibtisam ;
Al-Yahyai, Rashid ;
Yaish, Mahmoud W. .
PLOS ONE, 2018, 13 (01)
[5]   Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast [J].
Ali, R ;
Brett, CL ;
Mukherjee, S ;
Rao, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (06) :4498-4506
[6]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[7]   Ion Exchangers NHX1 and NHX2 Mediate Active Potassium Uptake into Vacuoles to Regulate Cell Turgor and Stomatal Function in Arabidopsis [J].
Barragan, Veronica ;
Leidi, Eduardo O. ;
Andres, Zaida ;
Rubio, Lourdes ;
De Luca, Anna ;
Fernandez, Jose A. ;
Cubero, Beatriz ;
Pardo, Jose M. .
PLANT CELL, 2012, 24 (03) :1127-1142
[8]   Cellular ion homeostasis: emerging roles of intracellular NHX Na/H antiporters in plant growth and development [J].
Bassil, Elias ;
Coku, Ardian ;
Blumwald, Eduardo .
JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (16) :5727-5740
[9]   Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa [J].
Bonales-Alatorre, Edgar ;
Pottosin, Igor ;
Shabala, Lana ;
Chen, Zhong-Hua ;
Zeng, Fanrong ;
Jacobsen, Sven-Erik ;
Shabala, Sergey .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (05) :9267-9285
[10]   Evolutionary origins of eukaryotic sodium/proton exchangers [J].
Brett, CL ;
Donowitz, M ;
Rao, R .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2005, 288 (02) :C223-C239