JACKS: joint analysis of CRISPR/Cas9 knockout screens

被引:44
|
作者
Allen, Felicity [1 ]
Behan, Fiona [1 ]
Khodak, Anton [1 ]
Iorio, Francesco [1 ]
Yusa, Kosuke [1 ]
Garnett, Mathew [1 ]
Parts, Leopold [1 ,2 ]
机构
[1] Wellcome Sanger Inst, Wellcome Genome Campus, Hinxton CB10 1SA, Cambs, England
[2] Univ Tartu, Dept Comp Sci, EE-50409 Tartu, Estonia
关键词
CRISPR-CAS9; DESIGN; CANCER; SGRNAS;
D O I
10.1101/gr.238923.118
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome-wide CRISPR/Cas9 knockout screens are revolutionizing mammalian functional genomics. However, their range of applications remains limited by signal variability from different guide RNAs that target the same gene, which confounds gene effect estimation and dictates large experiment sizes. To address this problem, we report JACKS, a Bayesian method that jointly analyzes screens performed with the same guide RNA library. Modeling the variable guide efficacies greatly improves hit identification over processing a single screen at a time and outperforms existing methods. This more efficient analysis gives additional hits and allows designing libraries with a 2.5-fold reduction in required cell numbers without sacrificing performance compared to current analysis standards.
引用
收藏
页码:464 / 471
页数:8
相关论文
共 50 条
  • [31] Efficient Gene Knockout in Goats Using CRISPR/Cas9 System
    Ni, Wei
    Qiao, Jun
    Hu, Shengwei
    Zhao, Xinxia
    Regouski, Misha
    Yang, Min
    Polejaeva, Irina A.
    Chen, Chuangfu
    PLOS ONE, 2014, 9 (09):
  • [32] CRISPR/Cas9 Methodology for the Generation of Knockout Deletions in Caenorhabditis elegans
    Au, Vinci
    Li-Leger, Erica
    Raymant, Greta
    Flibotte, Stephane
    Chen, George
    Martin, Kiana
    Fernando, Lisa
    Doell, Claudia
    Rosell, Federico I.
    Wang, Su
    Edgley, Mark L.
    Rougvie, Ann E.
    Hutter, Harald
    Moerman, Donald G.
    G3-GENES GENOMES GENETICS, 2019, 9 (01): : 135 - 144
  • [33] Generation of ETV5 Knockout Pigs with CRISPR/Cas9
    Zhang, Mao
    Cai, Gengyuan
    Zhou, Rong
    Yang, Huaqiang
    INDIAN JOURNAL OF ANIMAL RESEARCH, 2021, 55 (09) : 999 - 1004
  • [34] Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9
    Zheng, Jun
    Jia, Honglin
    Zheng, Yonghui
    INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2015, 45 (2-3) : 141 - 148
  • [35] Optimal LentiCRISPR-Based System for Sequential CRISPR/Cas9 Screens
    Hutcheson, Rebecca L.
    Hayes, Mitchell
    Sugden, Bill
    ACS SYNTHETIC BIOLOGY, 2022, 11 (07): : 2259 - 2266
  • [36] Genetic screens with improved design CRISPR/Cas9 sgRNA libraries.
    Chenchik, A. A.
    Makhanov, M.
    Baron, S.
    Diehl, P.
    Sukhov, D.
    Frangou, C.
    Tedesco, D.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [37] High-throughput genetic screens using CRISPR–Cas9 system
    Jiyeon Kweon
    Yongsub Kim
    Archives of Pharmacal Research, 2018, 41 : 875 - 884
  • [38] CRISPR/Cas9 screens to identify proliferation and resistance mechanisms in uveal melanoma
    Bennett, Richard L.
    Monagle, Darby
    Smith, Katelyn R. Raburn
    Sobh, Amin
    Smalley, Keiran S.
    Harbour, J. William
    Licht, Jonathan D.
    CANCER RESEARCH, 2023, 83 (07)
  • [39] Combinatorial CRISPR–Cas9 screens for de novo mapping of genetic interactions
    John Paul Shen
    Dongxin Zhao
    Roman Sasik
    Jens Luebeck
    Amanda Birmingham
    Ana Bojorquez-Gomez
    Katherine Licon
    Kristin Klepper
    Daniel Pekin
    Alex N Beckett
    Kyle Salinas Sanchez
    Alex Thomas
    Chih-Chung Kuo
    Dan Du
    Assen Roguev
    Nathan E Lewis
    Aaron N Chang
    Jason F Kreisberg
    Nevan Krogan
    Lei Qi
    Trey Ideker
    Prashant Mali
    Nature Methods, 2017, 14 : 573 - 576
  • [40] The CRISPR/CAS9 world
    Perini, Giovanni
    MOLECULAR CYTOGENETICS, 2017, 10