Development of a β-Variational Autoencoder for Disentangled Latent Space Representation of Anterior Segment Optical Coherence Tomography Images

被引:2
作者
Shon, Kilhwan [1 ,2 ]
Sung, Kyung Rim [3 ]
Kwak, Jiehoon [3 ]
Shin, Joong Won [3 ]
Lee, Joo Yeon [2 ,4 ]
机构
[1] Gangneung Asan Hosp, Dept Ophthalmol, Kangnung, South Korea
[2] Asan Artificial Intelligence Inst, Hwaseong Si, Gyeonggi Do, South Korea
[3] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Ophthalmol, 388-1 Pungnap 2 Dong, Seoul 138736, South Korea
[4] Camp 9 Orthoped Clin, Hwaseong Si, Gyeonggi Do, South Korea
来源
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY | 2022年 / 11卷 / 02期
关键词
anterior segment OCT; deep learning; artificial intelligence; 3-variational autoencoder; ANGLE-CLOSURE;
D O I
10.1167/tvst.11.2.11
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To investigate the feasibility of extracting a low-dimensional latent structure of anterior segment optical coherence tomography (AS-OCT) images by use of a /3Methods: We retrospectively collected 2111 AS-OCT images from 2111 eyes of 1261 participants from the ongoing Asan Glaucoma Progression Study. After hyperparameter optimization, the images were analyzed with /3-VAE. Results: The mean participant age was 64.4 years, with mean values of visual field index and mean deviation of 86.4% and -5.33 dB, respectively. After experiments, a latent space size of 6 and /3 value of 53 were selected for latent space analysis with /3-VAE. Latent variables were successfully disentangled, showing readily interpretable distinct characteristics, such as the overall depth and area of the anterior chamber (771), pupil diameter (772), iris profile (773 and 774), and corneal curvature (775). Conclusions: /3-VAE can successfully be applied for disentangled latent space representation of AS-OCT images, revealing the high possibility of applying unsupervised learning in the medical image analysis. Translational Relevance: This study demonstrates that a deep learning-based latent space model can be applied for the analysis of AS-OCT images.
引用
收藏
页数:10
相关论文
共 28 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   A Hierarchical Cluster Analysis of Primary Angle Closure Classification Using Anterior Segment Optical Coherence Tomography Parameters [J].
Baek, Seunghee ;
Sung, Kyung Rim ;
Sun, Jae Hong ;
Lee, Jong Rak ;
Lee, Kyoung Sub ;
Kim, Chan Yun ;
Shon, Kilhwan .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (01) :848-853
[3]  
Ciresan D. C., 2011, IJCAI INT JOINT C AR, P1237, DOI DOI 10.5591/978-1-57735-516-8/IJCAI11-210
[4]   A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images [J].
Fu, Huazhu ;
Baskaran, Mani ;
Xu, Yanwu ;
Lin, Stephen ;
Wong, Damon Wing Kee ;
Liu, Jiang ;
Tun, Tin A. ;
Mahesh, Meenakshi ;
Perera, Shamira A. ;
Aung, Tin .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 203 :37-45
[5]   On the Intrinsic Dimensionality of Image Representations [J].
Gong, Sixue ;
Boddeti, Vishnu Naresh ;
Jain, Anil K. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3982-3991
[6]   Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex [J].
Han, Kuan ;
Wen, Haiguang ;
Shi, Junxing ;
Lu, Kun-Han ;
Zhang, Yizhen ;
Fu, Di ;
Liu, Zhongming .
NEUROIMAGE, 2019, 198 :125-136
[7]  
HaoH ZhaoY, MED IMAGE ANAL, V69
[8]  
Higgins I., 2017, ICLR POSTER
[9]  
Jaderberg M, 2015, ADV NEUR IN, V28
[10]  
Kingma D.P., 2015, C TRACK P