Dynamics and Flow Effects in the Beris-Edwards System Modeling Nematic Liquid Crystals

被引:22
作者
Wu, Hao [1 ,2 ,3 ]
Xu, Xiang [4 ]
Zarnescu, Arghir [5 ,6 ,7 ]
机构
[1] Fudan Univ, Sch Math Sci, Han Dan Rd 220, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Han Dan Rd 220, Shanghai 200433, Peoples R China
[3] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Han Dan Rd 220, Shanghai 200433, Peoples R China
[4] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[5] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Bizkaia, Spain
[6] BCAM, Mazarredo 14, E-48009 Bilbao, Bizkaia, Spain
[7] Romanian Acad, Simion Stoilow Inst, 21 Calea Grivitei, Bucharest 010702, Romania
关键词
Q-TENSOR SYSTEM; COUPLED NAVIER-STOKES; WEAK SOLUTIONS; REGULARITY; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00205-018-1297-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Beris-Edwards system modelling incompressible liquid crystal flows of nematic type. This couples a Navier-Stokes system for the fluid velocity with a parabolic reaction-convection-diffusion system for the Q-tensors describing the average orientation of liquid crystal molecules. In this paper, we study the effect that the flow has on the dynamics of the Q-tensors by considering two fundamental aspects: the preservation of the eigenvalue-range and the dynamical emergence of defects in the limit of large Ericksen number.
引用
收藏
页码:1217 / 1267
页数:51
相关论文
共 48 条
[41]   On the well-posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces [J].
Lin, Junyu ;
Ding, Shijin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (02) :158-173
[42]   Well-Posedness of Degenerate Initial-Boundary Value Problems to a Hyperbolic-Parabolic Coupled System Arising from Nematic Liquid Crystals [J].
Hu, Yanbo ;
Sugiyama, Yuusuke .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2025, 249 (02)
[43]   GLOBALLY WEAK SOLUTIONS TO THE FLOW OF COMPRESSIBLE LIQUID CRYSTALS SYSTEM [J].
Liu, Xian-Gao ;
Qing, Jie .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (02) :757-788
[44]   On standing waves and gradient-flow for the Landau-De Gennes model of nematic liquid crystals [J].
Barbera, Daniele ;
Georgiev, Vladimir .
EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (02) :672-699
[45]   Smoothness and Liouville type theorem for a system with cubic nonlinearities from biaxial nematic liquid crystals in two dimensions [J].
Fang, Jiahui ;
Lin, Junyu .
APPLIED MATHEMATICS LETTERS, 2022, 134
[46]   HIGH-ORDER ENERGY STABLE NUMERICAL SCHEMES FOR A NONLINEAR VARIATIONAL WAVE EQUATION MODELING NEMATIC LIQUID CRYSTALS IN TWO DIMENSIONS [J].
Aursand, Peder ;
Koley, Ujjwal .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2017, 14 (01) :20-47
[47]   Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation [J].
Barrett, JW ;
Feng, XB ;
Prohl, A .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (01) :175-199
[48]   On the global well-posedness of strong dynamics of incompressible nematic liquid crystals in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document} [J].
Maria Schonbek ;
Yoshihiro Shibata .
Journal of Evolution Equations, 2017, 17 (1) :537-550