Dynamics and Flow Effects in the Beris-Edwards System Modeling Nematic Liquid Crystals

被引:22
作者
Wu, Hao [1 ,2 ,3 ]
Xu, Xiang [4 ]
Zarnescu, Arghir [5 ,6 ,7 ]
机构
[1] Fudan Univ, Sch Math Sci, Han Dan Rd 220, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Han Dan Rd 220, Shanghai 200433, Peoples R China
[3] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Han Dan Rd 220, Shanghai 200433, Peoples R China
[4] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[5] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Bizkaia, Spain
[6] BCAM, Mazarredo 14, E-48009 Bilbao, Bizkaia, Spain
[7] Romanian Acad, Simion Stoilow Inst, 21 Calea Grivitei, Bucharest 010702, Romania
关键词
Q-TENSOR SYSTEM; COUPLED NAVIER-STOKES; WEAK SOLUTIONS; REGULARITY; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00205-018-1297-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Beris-Edwards system modelling incompressible liquid crystal flows of nematic type. This couples a Navier-Stokes system for the fluid velocity with a parabolic reaction-convection-diffusion system for the Q-tensors describing the average orientation of liquid crystal molecules. In this paper, we study the effect that the flow has on the dynamics of the Q-tensors by considering two fundamental aspects: the preservation of the eigenvalue-range and the dynamical emergence of defects in the limit of large Ericksen number.
引用
收藏
页码:1217 / 1267
页数:51
相关论文
共 48 条
[21]   Weak solution to the steady compressible flow of nematic liquid crystals [J].
Tan, Zhong ;
Xu, Qiuju .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1343-1368
[22]   On weak solution to the steady compressible flow of nematic liquid crystals [J].
Xu, Qiuju ;
Tan, Zhong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (09) :3054-3068
[23]   Singularity for a nonlinear degenerate hyperbolic-parabolic coupled system arising from nematic liquid crystals [J].
Hu, Yanbo .
ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
[24]   WEAK-STRONG UNIQUENESS OF HYDRODYNAMIC FLOW OF NEMATIC LIQUID CRYSTALS [J].
Zhao, Ji-hong ;
Liu, Qiao .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
[25]   Compressible hydrodynamic flow of nematic liquid crystals with vacuum [J].
Huang, Jinrui ;
Ding, Shijin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (05) :1653-1684
[26]   Recent developments of analysis for hydrodynamic flow of nematic liquid crystals [J].
Lin, Fanghua ;
Wang, Changyou .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2029)
[27]   Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow [J].
Grasselli, M. ;
Wu, H. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (06) :979-992
[28]   On the global well-posedness of strong dynamics of incompressible nematic liquid crystals in RN [J].
Schonbek, Maria ;
Shibata, Yoshihiro .
JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (01) :537-550
[29]   On the Uniqueness of Heat Flow of Harmonic Maps and Hydrodynamic Flow of Nematic Liquid Crystals [J].
Fanghua LIN Changyou WANG Courant Institute of Mathematical Sciences New York University New York NY USADepartment of Mathematics University of Kentucky Lexington KY USA .
ChineseAnnalsofMathematics(SeriesB), 2010, 31 (06) :921-938
[30]   On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals [J].
Fanghua Lin ;
Changyou Wang .
Chinese Annals of Mathematics, Series B, 2010, 31 :921-938