Dynamics and Flow Effects in the Beris-Edwards System Modeling Nematic Liquid Crystals

被引:22
作者
Wu, Hao [1 ,2 ,3 ]
Xu, Xiang [4 ]
Zarnescu, Arghir [5 ,6 ,7 ]
机构
[1] Fudan Univ, Sch Math Sci, Han Dan Rd 220, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Han Dan Rd 220, Shanghai 200433, Peoples R China
[3] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Han Dan Rd 220, Shanghai 200433, Peoples R China
[4] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[5] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Bizkaia, Spain
[6] BCAM, Mazarredo 14, E-48009 Bilbao, Bizkaia, Spain
[7] Romanian Acad, Simion Stoilow Inst, 21 Calea Grivitei, Bucharest 010702, Romania
关键词
Q-TENSOR SYSTEM; COUPLED NAVIER-STOKES; WEAK SOLUTIONS; REGULARITY; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00205-018-1297-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Beris-Edwards system modelling incompressible liquid crystal flows of nematic type. This couples a Navier-Stokes system for the fluid velocity with a parabolic reaction-convection-diffusion system for the Q-tensors describing the average orientation of liquid crystal molecules. In this paper, we study the effect that the flow has on the dynamics of the Q-tensors by considering two fundamental aspects: the preservation of the eigenvalue-range and the dynamical emergence of defects in the limit of large Ericksen number.
引用
收藏
页码:1217 / 1267
页数:51
相关论文
共 48 条
[1]   On partial regularity criterion for the co-rotational Beris-Edwards system modeling nematic liquid crystal flow [J].
Liu, Qiao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 301 :300-329
[2]   STRONG SOLUTIONS FOR THE BERIS-EDWARDS MODEL FOR NEMATIC LIQUID CRYSTALS WITH HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS [J].
Abels, Helmut ;
Dolzmann, Georg ;
Liu, YuNing .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2016, 21 (1-2) :109-152
[3]   Boundary layers for the upper-convected Beris-Edwards model of nematic liquid crystals [J].
De Anna, Francesco ;
Kortum, Joshua ;
Zarnescu, Arghir .
NONLINEARITY, 2025, 38 (04)
[4]   Number of Singular Points and Energy Equality for the Co-rotational Beris-Edwards System Modeling Nematic Liquid Crystal Flow [J].
Liu, Qiao .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (03)
[5]   Global Existence of Strong Solutions for Beris-Edwards's Liquid Crystal System in Dimension Three [J].
Luo, Yongshun ;
Li, Sirui ;
Zhao, Fangxin .
MATHEMATICS, 2019, 7 (10)
[6]   Long-Time Behavior of Global Weak Solutions for a Beris-Edwards Type Model of Nematic Liquid Crystals [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (04)
[7]   Global well-posedness of the two dimensional Beris-Edwards system with general Laudau-de Gennes free energy [J].
Liu, Yuning ;
Wu, Hao ;
Xu, Xiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (12) :6958-7001
[8]   THE HYDROSTATIC LIMIT OF THE BERIS-EDWARDS SYSTEM IN DIMENSION TWO [J].
Li, Xingyu ;
Paicu, Marius ;
Zarnescu, Arghir .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (06) :1701-1732
[9]   Suitable Weak Solutions for the Co-rotational Beris-Edwards System in Dimension Three [J].
Du, Hengrong ;
Hu, Xianpeng ;
Wang, Changyou .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 238 (02) :749-803
[10]   On partial regularity for weak solutions to the 3D co-rotational Beris-Edwards system [J].
Liu, Qiao .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 71