Dynamics and Flow Effects in the Beris-Edwards System Modeling Nematic Liquid Crystals

被引:22
作者
Wu, Hao [1 ,2 ,3 ]
Xu, Xiang [4 ]
Zarnescu, Arghir [5 ,6 ,7 ]
机构
[1] Fudan Univ, Sch Math Sci, Han Dan Rd 220, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Han Dan Rd 220, Shanghai 200433, Peoples R China
[3] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Han Dan Rd 220, Shanghai 200433, Peoples R China
[4] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[5] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Bizkaia, Spain
[6] BCAM, Mazarredo 14, E-48009 Bilbao, Bizkaia, Spain
[7] Romanian Acad, Simion Stoilow Inst, 21 Calea Grivitei, Bucharest 010702, Romania
关键词
Q-TENSOR SYSTEM; COUPLED NAVIER-STOKES; WEAK SOLUTIONS; REGULARITY; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00205-018-1297-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Beris-Edwards system modelling incompressible liquid crystal flows of nematic type. This couples a Navier-Stokes system for the fluid velocity with a parabolic reaction-convection-diffusion system for the Q-tensors describing the average orientation of liquid crystal molecules. In this paper, we study the effect that the flow has on the dynamics of the Q-tensors by considering two fundamental aspects: the preservation of the eigenvalue-range and the dynamical emergence of defects in the limit of large Ericksen number.
引用
收藏
页码:1217 / 1267
页数:51
相关论文
共 39 条
[21]   UNIQUENESS OF WEAK SOLUTIONS OF THE FULL COUPLED NAVIER-STOKES AND Q-TENSOR SYSTEM IN 2D [J].
De Anna, Francesco ;
Zarnescu, Arghir .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (08) :2127-2178
[22]   PARTIAL REGULARITY FOR MINIMIZERS OF SINGULAR ENERGY FUNCTIONALS, WITH APPLICATION TO LIQUID CRYSTAL MODELS [J].
Evans, Lawrence C. ;
Kneuss, Olivier ;
Hung Tran .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (05) :3389-3413
[23]   Higher order commutator estimates and local existence for the non-resistive MHD equations and related models [J].
Fefferman, Charles L. ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (04) :1035-1056
[24]   Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy [J].
Feireisl, Eduard ;
Schimperna, Giulio ;
Rocca, Elisabetta ;
Zarnescu, Arghir .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (05) :1269-1299
[25]  
Feireisl E, 2014, COMMUN MATH SCI, V12, P317
[26]   Weak solutions for an initial-boundary Q-tensor problem related to liquid crystals [J].
Guillen-Gonzalez, Francisco ;
Angeles Rodirguez-Bellido, Maria .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 112 :84-104
[27]   WEAK TIME REGULARITY AND UNIQUENESS FOR A Q-TENSOR MODEL [J].
Guillen-Gonzalez, Francisco ;
Angeles Rodriguez-Bellido, Maria .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) :3540-3567
[28]  
Hartman P., 1982, Ordinary Differential Equations
[29]   Dynamic cubic instability in a 2D Q-tensor model for liquid crystals [J].
Iyer, Gautam ;
Xu, Xiang ;
Zarnescu, Arghir D. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) :1477-1517
[30]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907