Dynamics and Flow Effects in the Beris-Edwards System Modeling Nematic Liquid Crystals

被引:21
作者
Wu, Hao [1 ,2 ,3 ]
Xu, Xiang [4 ]
Zarnescu, Arghir [5 ,6 ,7 ]
机构
[1] Fudan Univ, Sch Math Sci, Han Dan Rd 220, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Han Dan Rd 220, Shanghai 200433, Peoples R China
[3] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Han Dan Rd 220, Shanghai 200433, Peoples R China
[4] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[5] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Bizkaia, Spain
[6] BCAM, Mazarredo 14, E-48009 Bilbao, Bizkaia, Spain
[7] Romanian Acad, Simion Stoilow Inst, 21 Calea Grivitei, Bucharest 010702, Romania
关键词
Q-TENSOR SYSTEM; COUPLED NAVIER-STOKES; WEAK SOLUTIONS; REGULARITY; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00205-018-1297-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Beris-Edwards system modelling incompressible liquid crystal flows of nematic type. This couples a Navier-Stokes system for the fluid velocity with a parabolic reaction-convection-diffusion system for the Q-tensors describing the average orientation of liquid crystal molecules. In this paper, we study the effect that the flow has on the dynamics of the Q-tensors by considering two fundamental aspects: the preservation of the eigenvalue-range and the dynamical emergence of defects in the limit of large Ericksen number.
引用
收藏
页码:1217 / 1267
页数:51
相关论文
共 48 条