共 48 条
Dynamics and Flow Effects in the Beris-Edwards System Modeling Nematic Liquid Crystals
被引:21
作者:
Wu, Hao
[1
,2
,3
]
Xu, Xiang
[4
]
Zarnescu, Arghir
[5
,6
,7
]
机构:
[1] Fudan Univ, Sch Math Sci, Han Dan Rd 220, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Han Dan Rd 220, Shanghai 200433, Peoples R China
[3] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Han Dan Rd 220, Shanghai 200433, Peoples R China
[4] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[5] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Bizkaia, Spain
[6] BCAM, Mazarredo 14, E-48009 Bilbao, Bizkaia, Spain
[7] Romanian Acad, Simion Stoilow Inst, 21 Calea Grivitei, Bucharest 010702, Romania
关键词:
Q-TENSOR SYSTEM;
COUPLED NAVIER-STOKES;
WEAK SOLUTIONS;
REGULARITY;
UNIQUENESS;
EXISTENCE;
D O I:
10.1007/s00205-018-1297-2
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the Beris-Edwards system modelling incompressible liquid crystal flows of nematic type. This couples a Navier-Stokes system for the fluid velocity with a parabolic reaction-convection-diffusion system for the Q-tensors describing the average orientation of liquid crystal molecules. In this paper, we study the effect that the flow has on the dynamics of the Q-tensors by considering two fundamental aspects: the preservation of the eigenvalue-range and the dynamical emergence of defects in the limit of large Ericksen number.
引用
收藏
页码:1217 / 1267
页数:51
相关论文