Influence of light polarization state on the imaging quality of dark-field imaging system

被引:1
|
作者
Chen, Dan [1 ]
Wang, Yuqin [1 ]
Zhang, Rongzhu [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
关键词
annular light; FDTD; polarization state; defects detection; SCATTERING; DEFECT;
D O I
10.1088/2040-8986/ac3f90
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Annular linear polarized light is used as the illumination source of a reflective dark-field detection system in this paper. According to the theories of the bidirectional reflectance distribution function and multi-beam interference, the influence of the light polarization state on the intensity distribution of the scattered light is analyzed in detail. For surface defects, a simulation model of dark-field imaging is established based on the finite-difference time-domain method. Both the near-field and the far-field scattering intensity distributions caused by surface defects are calculated under different illumination conditions. The incidence angle and polarization state of the illuminated light are optimized. Simulation and experimental results show that the image quality will be minimally affected by the interference effect, while P-polarized light illuminates with an incident angle of 45 degrees. The higher measurement accuracy of the dark-field imaging detection system can be obtained when the optimized illumination scheme is used.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] The choice of an autocorrelation length in dark-field lung imaging
    Spindler, Simon
    Etter, Dominik
    Rawlik, Michal
    Polikarpov, Maxim
    Romano, Lucia
    Shi, Zhitian
    Jefimovs, Konstantins
    Wang, Zhentian
    Stampanoni, Marco
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [22] ANNULAR DARK-FIELD IMAGING - RESOLUTION AND THICKNESS EFFECTS
    HILLYARD, S
    LOANE, RF
    SILCOX, J
    ULTRAMICROSCOPY, 1993, 49 (1-4) : 14 - 25
  • [23] Revealing microstructural inhomogeneities with dark-field neutron imaging
    Hilger, A.
    Kardjilov, N.
    Kandemir, T.
    Manke, I.
    Banhart, J.
    Penumadu, D.
    Manescu, A.
    Strobl, M.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (03)
  • [24] Dark-field hyperspectral X-ray imaging
    Egan, Christopher K.
    Jacques, Simon D. M.
    Connolley, Thomas
    Wilson, Matthew D.
    Veale, Matthew C.
    Seller, Paul
    Cernik, Robert J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2165):
  • [25] Quantification of the sensitivity range in neutron dark-field imaging
    Betz, B.
    Harti, R. P.
    Strobl, M.
    Hovind, J.
    Kaestner, A.
    Lehmann, E.
    Van Swygenhoven, H.
    Gruenzweig, C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (12):
  • [26] Dark-field microscopy in imaging of plasmon resonant nanoparticles
    Liu, Mengmeng
    Chao, Jie
    Deng, Suhui
    Wang, Kun
    Li, Kun
    Fan, Chunhai
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2014, 124 : 111 - 117
  • [27] COMPUTER EXPERIMENTS FOR TILTED BEAM DARK-FIELD IMAGING
    KRAKOW, W
    ULTRAMICROSCOPY, 1976, 1 (03) : 203 - 221
  • [28] Grating-Based Dark-field Breast Imaging
    Rieger, Jens
    Bayer, Florian
    Durst, Juergen
    Goedel, Karl
    Haas, Wilhelm
    Horn, Florian
    Michel, Thilo
    Pelzer, Georg
    Ritter, Andre
    Weber, Thomas
    Zang, Andrea
    Anton, Gisela
    MEDICAL IMAGING 2013: PHYSICS OF MEDICAL IMAGING, 2013, 8668
  • [29] Dark-field Z-scan imaging technique
    Wang, Hongzhen
    Cassagne, Christophe
    Leblond, Herve
    Boudebs, Georges
    OPTICS COMMUNICATIONS, 2016, 366 : 148 - 153
  • [30] The choice of an autocorrelation length in dark-field lung imaging
    Simon Spindler
    Dominik Etter
    Michał Rawlik
    Maxim Polikarpov
    Lucia Romano
    Zhitian Shi
    Konstantins Jefimovs
    Zhentian Wang
    Marco Stampanoni
    Scientific Reports, 13