Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa

被引:65
作者
Barnes, Melissa D. [1 ,2 ]
Taracila, Magdalena A. [1 ,2 ]
Rutter, Joseph D. [1 ]
Bethel, Christopher R. [1 ]
Galdadas, Ioannis [9 ]
Hujer, Andrea M. [1 ,2 ]
Caselli, Emilia [7 ]
Prati, Fabio [7 ]
Dekker, John P. [8 ]
Papp-Wallace, Krisztina M. [1 ,2 ,5 ,6 ]
Haider, Shozeb [9 ]
Bonomo, Robert A. [1 ,2 ,3 ,4 ,5 ,6 ,10 ,11 ]
机构
[1] Louis Stokes Cleveland Dept Vet Affairs, Res Serv, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Med, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Dept Mol Biol & Microbiol, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Dept Pharmacol, Cleveland, OH 44106 USA
[5] Case Western Reserve Univ, Dept Biochem, Cleveland, OH 44106 USA
[6] Case Western Reserve Univ, Dept Prote & Bioinformat, Cleveland, OH 44106 USA
[7] Univ Modena & Reggio Emilia, Dept Life Sci, Modena, Italy
[8] NIH, Dept Lab Med, Clin Ctr, Microbiol Serv, Bldg 10, Bethesda, MD 20892 USA
[9] UCL, UCL Sch Pharm, London, England
[10] CWRU Cleveland VAMC Ctr Antimicrobial Resistance, Cleveland, OH 44106 USA
[11] Louis Stokes Cleveland Dept Vet Affairs, GRECC, Cleveland, OH 44106 USA
基金
美国国家卫生研究院;
关键词
AmpC; PDC-3; antibiotic resistance; beta-lactam; beta-lactamase; ceftolozane; omega loop; AMPC BETA-LACTAMASE; OMEGA-LOOP; CARBOXYLATE RECOGNITION; MOLECULAR-DYNAMICS; BORONIC ACIDS; INHIBITION; SUBSTRATE; KPC-2; CEFTAZIDIME/AVIBACTAM; AVIBACTAM;
D O I
10.1128/mBio.02085-18
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Pseudomonas aeruginosa produces a class C beta-lactamase (e.g., PDC-3) that robustly hydrolyzes early generation cephalosporins often at the diffusion limit; therefore, bacteria possessing these beta-lactamases are resistant to many beta-lactam antibiotics. In response to this significant clinical threat, ceftolozane, a 3' aminopyrazolium cephalosporin, was developed. Combined with tazobactam, ceftolozane promised to be effective against multidrug-resistant P. aeruginosa. Alarmingly, Omega-loop variants of the PDC beta-lactamase (V213A, G216R, E221K, E221G, and Y223H) were identified in ceftolozane/tazobactam-resistant P. aeruginosa clinical isolates. Herein, we demonstrate that the Escherichia coil strain expressing the E221K variant of PDC-3 had the highest minimum inhibitory concentrations (MICs) against a panel of beta-lactam antibiotics, including ceftolozane and ceftazidime, a cephalosporin that dif- fers in structure largely in the R2 side chain. The k(cat) values of the E221K variant for both substrates were equivalent, whereas the K-m for ceftolozane (341 +/- 64 mu M) was higher than that for ceftazidime (174 +/- 20 mu M). Timed mass spectrometry, thermal stability, and equilibrium unfolding studies revealed key mechanistic insights. Enhanced sampling molecular dynamics simulations identified conformational changes in the E221K variant Omega-loop, where a hidden pocket adjacent to the catalytic site opens and stabilizes ceftolozane for efficient hydrolysis. Encouragingly, the diazabicyclooctane beta-lactamase inhibitor avibactam restored susceptibility to ceftolozane and ceftazidime in cells producing the E221K variant. In addition, a boronic acid transition state inhibitor, LP-06, lowered the ceftolozane and ceftazidime MICs by 8-fold for the E221 K-expressing strain. Understanding these structural changes in evolutionarily selected variants is critical toward designing effective beta-lactam/beta-lactamase inhibitor therapies for P. aeruginosa infections. IMPORTANCE The presence of beta-lactamases (e.g., PDC-3) that have naturally evolved and acquired the ability to break down beta-lactam antibiotics (e.g., ceftazidime and ceftolozane) leads to highly resistant and potentially lethal Pseudomonas aeruginosa infections. We show that wild-type PDC-3 beta-lactamase forms an acyl enzyme complex with ceftazidime, but it cannot accommodate the structurally similar ceftolozane that has a longer R2 side chain with increased basicity. A single amino acid substitution from a glutamate to a lysine at position 221 in PDC-3 (E221K) causes the tyrosine residue at 223 to adopt a new position poised for efficient hydrolysis of both cephalosporins. The importance of the mechanism of action of the E221K variant, in particular, is underscored by its evolutionary recurrences in multiple bacterial species. Understanding the biochemical and molecular basis for resistance is key to designing effective therapies and developing new beta-lactam/beta-lactamase inhibitor combinations.
引用
收藏
页数:19
相关论文
共 66 条
[1]   ICM - A NEW METHOD FOR PROTEIN MODELING AND DESIGN - APPLICATIONS TO DOCKING AND STRUCTURE PREDICTION FROM THE DISTORTED NATIVE CONFORMATION [J].
ABAGYAN, R ;
TOTROV, M ;
KUZNETSOV, D .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1994, 15 (05) :488-506
[2]  
[Anonymous], 2017, Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities
[3]   Role of the Ω-loop in the activity, substrate specificity, and structure of class A β-lactamase [J].
Banerjee, S ;
Pieper, U ;
Kapadia, G ;
Pannell, LK ;
Herzberg, O .
BIOCHEMISTRY, 1998, 37 (10) :3286-3296
[4]   Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering [J].
Barnes, Melissa D. ;
Winkler, Marisa L. ;
Taracila, Magdalena A. ;
Page, Malcolm G. ;
Desarbre, Eric ;
Kreiswirth, Barry N. ;
Shields, Ryan K. ;
Minh-Hong Nguyen ;
Clancy, Cornelius ;
Spellberg, Brad ;
Papp-Wallace, Krisztina M. ;
Bonomo, Robert A. .
MBIO, 2017, 8 (05)
[5]   Functional analyses of AmpC β-lactamase through differential stability [J].
Beadle, BM ;
McGovern, SL ;
Patera, A ;
Shoichet, BK .
PROTEIN SCIENCE, 1999, 8 (09) :1816-1824
[6]   Characterization of the AmpC β-Lactamase from Burkholderia multivorans [J].
Becka, Scott A. ;
Zeiser, Elise T. ;
Barnes, Melissa D. ;
Taracila, Magdalena A. ;
Nguyen, Kevin ;
Singh, Indresh ;
Sutton, Granger G. ;
LiPuma, John J. ;
Fouts, Derrick E. ;
Papp-Wallace, Krisztina M. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2018, 62 (10)
[7]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[8]   Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins [J].
Berrazeg, M. ;
Jeannot, K. ;
Enguene, Veronique Yvette Ntsogo ;
Broutin, I. ;
Loeffert, S. ;
Fournier, D. ;
Plesiat, P. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2015, 59 (10) :6248-6255
[9]   Reconstructing the Equilibrium Boltzmann Distribution from Well-Tempered Metadynamics [J].
Bonomi, M. ;
Barducci, A. ;
Parrinello, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (11) :1615-1621
[10]   Structure-Based Analysis of Boronic Acids as Inhibitors of Acinetobacter-Derived Cephalosporinase-7, a Unique Class C β-Lactamase [J].
Bouza, Alexandra A. ;
Swanson, Hollister C. ;
Smolen, Kali A. ;
VanDine, Alison L. ;
Taracila, Magdalena A. ;
Romagnoli, Chiara ;
Caselli, Emilia ;
Prati, Fabio ;
Bonomo, Robert A. ;
Powers, Rachel A. ;
Wallar, Bradley J. .
ACS INFECTIOUS DISEASES, 2018, 4 (03) :325-336